Home
Class 10
MATHS
lf sin alpha and cos alpha are the roots...

lf `sin alpha` and `cos alpha` are the roots of the equation `ax^2 + bx + c = 0` then prove that `a^2+2ac = b^2`

Text Solution

Verified by Experts

Since `sinthetaandcostheta`are the roots of equation `ax^(2)-bx+c=0`.
`:.` Sum of roots , `sintheta+costheta=-((-b))/(a)=(b)/(a)` ...(1)
and product of roots , `sinthetacostheta=(c)/(a)` ...(2)
On squaring equation (1), both sides , we get
`(sintheta+costheta)^(2)=(b^(2))/(a^(2))`
`sin ^(2)theta+cos^(2)theta+2sinthetacostheta=(b^(2))/(a^(2))`
`1+2sinthetacostheta=(b^(2))/(a^(2))` (`:' sin^(2)theta+cos^(2)theta=1)`
`1+2*(c)/(a)=(b^(2))/(a^(2))`[from(2)]
`a^(2)+2ac=b^(2)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sin alpha and cos alpha are the roots of the equation ax^(2)+bx+c=0 then prove that a^(2)+2ac=b^(2)

If sin alpha,cos alpha are the roots of the equation x^(2)+bx+c=0(c!=0), then

If sin alpha and cos alpha are the roots of the equation ax^(2)-bx-1=0 , then find the relation between a and b.

If sintheta and costheta are roots of the equation ax^(2)+bx+c=0 , prove that a^(2)-b^(2)+2ac=0 .

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

If sin alpha,cos alpha are the roots of equation cx^(2)+bx+a=0, then show that b^(2)-2ac-c^(2)=0