Home
Class 10
MATHS
Express sin 67^(@)+cos75^(@) in terms of...

Express `sin 67^(@)+cos75^(@)` in terms of trigononmertic ratios of angles between `0^(@)and 45^(@)`.

Text Solution

Verified by Experts

`sin67^(@)+cos75^(@)=sin(90^(@)-23^(@))+cos(90^(@)-15^(@))`
`=cos23^(@)+sin15^(@)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8a|20 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise 8 B|22 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN|Exercise PROBLEMS FROM NCERT/ EXEMPLAR|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Express sin67^(@)+cos75^(@) in terms of trigonometric ratios of angles between 0^(@) and 45^(@)

Express cot85^(@)+cos75^(@) in terms of trigonometric ratios of angles between 0^(o) and 45^(@)

Express "cosec"48^(@)+tan88^(@) in terms of trigonometric ratios of angle between 0^(@)and45^(@) .

Express cos70^(@)+sin70^(@)+tan65^(@) in terms of trigonometric ratios of angles lying between 0^(@)and45^(@)

Express each of the following in terms of trigonometric ratios of angles between 0^(@)and 45^(@) (i) sin70^(@)+sec70^(@) " " (ii) tan65^(@)+"cosec "65^(@) " " (iii) cos81^(@)+cot80^(@)

Express each of the following in terms of trigonometric ratios of angles lying between 0^(@)and45^(@) . (i) sin70^(@)+cos70^(@) (ii) sec76^(@)tan48^(@) (iii) cot68^(@)+"cosec"62^(@) (iv) sin85^(@)+"cosec"82^(@)

Express each of the following in terms of trigonometric ratios of angle between 0^@ and 45^@ . (i) sin 75^@+cosec 75^@ . (ii) tan 65^@+cot 49^@ (iii) sec 67^@+cosec 58^@ (iv) cos 83^@-sec 76^@ .

Express each one of the following in terms of trigonometric ratios of angles lying between 0o and 45o cos78o+sec78o (ii) cos e c 54o+sin72o (iii) cot85o+cos75o (iv) sin67o+cos75o

NAGEEN PRAKASHAN-INTRODUCTION TO TRIGONOMETRY-Problems From NCERT/exemplar
  1. In P Q R , right-angled at Q ,\ P Q=3c m and P R=6c m . Determine ...

    Text Solution

    |

  2. Prove that : sqrt((1-cos^(2)theta)sec^(2)theta)=tantheta

    Text Solution

    |

  3. Prove (tantheta+2)(2tantheta+1)=5tantheta+2sec^2theta.

    Text Solution

    |

  4. If cosA+cos^(2)A=1, then prove that sin^(2)A+sin^(4)A=1.

    Text Solution

    |

  5. Prove the following identity: sec^4theta-sec^2theta=tan^4theta+tan^2th...

    Text Solution

    |

  6. Prove that : 1+(cot^(2)alpha)/(1+"cosec"alpha)="cesec"alpha

    Text Solution

    |

  7. Prove that : (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosecα...

    Text Solution

    |

  8. Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"t...

    Text Solution

    |

  9. If 2sin^(2)theta-cos^(2)theta=2, then find the value of theta.

    Text Solution

    |

  10. if tantheta+sectheta=l then prove that tantheta=(l^2+1)/(2l)

    Text Solution

    |

  11. If asintheta+bcostheta=c then prove that acostheta-bsintheta=sqrt(a^2+...

    Text Solution

    |

  12. If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(...

    Text Solution

    |

  13. Prove that : tantheta+tantheta+tan(90^(@)-theta)=sectheta*sec(90^(@)-t...

    Text Solution

    |

  14. Shown that : tan48^(@)tan23^(@)tan42^(@)tan67^(@)=1

    Text Solution

    |

  15. If tan A= cot B. prove that : A+B=90^(@)

    Text Solution

    |

  16. Express sin 67^(@)+cos75^(@) in terms of trigononmertic ratios of angl...

    Text Solution

    |

  17. If tan A=cot (A-18^(@)) where 2A is an acute angle , find the value of...

    Text Solution

    |

  18. If sec4A ="cosec"(A-20^@) where 4A is an acute angle , find the value ...

    Text Solution

    |

  19. The value of the expression cosec(75^(@)+theta)-sec(15^(@)-theta)-tan(...

    Text Solution

    |

  20. If cos (alpha+beta)=0, then sin(alpha-beta)canbe reduced to : (...

    Text Solution

    |