Home
Class 10
MATHS
Solve for 'x' and 'y': (a -b) x + (a + b...

Solve for 'x' and 'y': `(a -b) x + (a + b) y =a^2 - b^2 - 2ab (a + b) (x + y) = a ^2+ b^2`

Text Solution

Verified by Experts

Given equations are (a - b) x + (a + b) `y = a^(2) - 2ab - b^(2) ….(1)`
and (a + b) (x + y) = `a^(2) + b^(2)`
or (a + b)x + (a + b) `y = a^(2) + b^(2) …..(2)`
On subtracting equation (2) from (1), we get
`(a-b)x - (a + b) x = a^(2) - 2ab - b^(2) -a^(2) -b^(2)`
implies x(a-b-a-b) = - `2b^(2) - 2ab`
implies -2bx = - 2b (b + a)
implies x = a + b
Putting x = (a + b) in equation (1), we get
`(a-b)(a+b)+(a+b) y = a^(2) - 2ab -b^(2)`
implies `a^(2) - b^(2) + (a + b) y = a^(2) - 2ab - b^(2)`
implies `(a + b) y = - 2ab`
` implies y = (-2ab)/(a+b)`
Hence, the solution is `{:(x = a + b),(y = (-2ab)/(a+b)):}}`.
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|18 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations. : ( a - b) x + (a + b ) y = a ^(2) - 2ab - b ^(2) , (a + b ) (x + y ) = a ^(2) + b ^(2) .

(bx ) /(a) + ( ay ) /( b) = a ^(2) + b ^(2) , x + y = 2ab

Solve for xandy: (x)/(a)+(y)/(b)=2,ax-by=a^(2)-b^(2)

(b/a)x+(a/b)y=a^2b^2; x+y=2ab

Solve for x and y by cross multiplication method x + y = a + b ax – by = a^(2) – b^(2)

2x + 3y = 7 , (a+b + 1 )x + (a + 2b + 2) y = 4 (a + b ) + 1

Solve (x + ab)/(2) = (y + ab)/(2) and ax + by = a^(2) + b^(2) .

Solve the following system of equations in x and y(a-b)x+(a+b)y=a^(2)-2ab-b^(2)(a+b)(x+y)=a^(2)+b^(2)

(a-b)x+(a+b)y=a^(2)-2ab-b^(2)(a+b)(x+y)=a^(2)+b^(2) find x and y