Home
Class 10
MATHS
Solve : a(x+y)+b(x-y)=a^2-a b+b^2 a(x+y...

Solve : `a(x+y)+b(x-y)=a^2-a b+b^2` `a(x+y)-b(x-y)=a^2+a b+b^2`

Text Solution

Verified by Experts

Given equations can be written as
`ax + ay + bx - by = a^(2) - ab + b^(2)`
`implies (a+b) x + (a - b) y = a^(2) - ab + b^(2)" ....(1)"`
and `ax + ay - bx + by = a^(2) + ab + b^(2)`
`implies (a-b) x + (a+b) y = a^(2) + ab + b^(2) " ....(2)"`
For equations (1) and (2) by cross multiplication method, we have

`(x)/((a-b) xx [-a^(2) + ab + b^(2)]-(a+b) xx [-(a^(2) - ab + b^(2))])`
`=(y)/([-(a^(2)-ab+b^(2))]xx(a-b)-[-(a^(2)+ab + b^(2))xx (a + b)])=(1)/((a+b)(a+b)-(a-b)(a-b))`
implies `(x)/(-(a^(3) - b^(3))+ (a^(3)+b^(3)))`
`=(y)/(-(a^(3) - a^(2)b + ab^(2) - a^(2)b + ab^(2) - b^(3))+(a^(3)+a^(2)b+ab^(2)+a^(2)b+ab^(2)+b^(3)))=(1)/((a+b)^(2)-(a-b)^(2))`
implies `(x)/(2b^(3)) = (y)/(2a^(2)b-2ab^(2) + b^(3) + 2a^(2)b + 2ab^(2) + b^(3))=(1)/(4ab)`
implies `(x)/(2b^(3)) = (y)/(4a^(2)b + 2b^(3)) = (1)/(4ab)`
implies `(x)/(2b^(3))=(y)/(2b(2a^(2)+b^(2)))=(1)/(4ab)`
when `(x)/(2b^(3)) = (1)/(4ab) implies x = (2b^(3))/(4ab) implies x = (b^(2))/(2a)`
and `(y)/(2b(2a^(2) + b^(2))) = (1)/(4ab) implies y = (2b(2a^(2)+b^(2)))/(4ab) implies y = (2a^(2)+b^(2))/(2a)`
Hence, `{:(x = (b^(2))/(2a)),(y = (2a^(2)+b^(2))/(2a)):}}` is the required solution.
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|18 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve :a(x+y)+b(x-y)=a^(2)-ab+b^(2)a(x+y)-b(x-y)=a^(2)+ab+b^(2)

2a(x+y)-3b(x+y)

Solve :x+y=a+bax-by=a^(2)-b^(2)

x+y=a+b,ax-by=a^(2)-b^(2)

Solve: a^2x+b^2y=c^2; b^2x+a^2y=d^2

Solve: (x)/(a)+(y)/(b)=2,quad ax-by=a^(2)-b^(2)

Solve for x and y:x^(2)-y^(2)=xy-ab,(x+y)(ax+by)=2ab(a+b)

Solve for 'x' and 'y': (a -b) x + (a + b) y =a^2 - b^2 - 2ab (a + b) (x + y) = a ^2+ b^2