Home
Class 10
MATHS
{:((1)/(2(x + 2y)) + (5)/(3(3x - 2y))=(-...

`{:((1)/(2(x + 2y)) + (5)/(3(3x - 2y))=(-3)/(2)),((5)/(4(x + 2y)) - (3)/(5(3x - 2y)) = (61)/(60)):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. \(\frac{1}{2(x + 2y)} + \frac{5}{3(3x - 2y)} = -\frac{3}{2}\) 2. \(\frac{5}{4(x + 2y)} - \frac{3}{5(3x - 2y)} = \frac{61}{60}\) we will use substitution to simplify the equations. ### Step 1: Substitute Variables Let: - \( a = \frac{1}{x + 2y} \) - \( b = \frac{1}{3x - 2y} \) Now, we can rewrite the equations as: 1. \(\frac{a}{2} + \frac{5b}{3} = -\frac{3}{2}\) 2. \(\frac{5a}{4} - \frac{3b}{5} = \frac{61}{60}\) ### Step 2: Clear the Fractions Multiply the first equation by 6 (the least common multiple of the denominators 2 and 3): \[ 6 \left(\frac{a}{2}\right) + 6 \left(\frac{5b}{3}\right) = 6 \left(-\frac{3}{2}\right) \] This simplifies to: \[ 3a + 10b = -9 \quad \text{(Equation 1)} \] Now, multiply the second equation by 20 (the least common multiple of the denominators 4 and 5): \[ 20 \left(\frac{5a}{4}\right) - 20 \left(\frac{3b}{5}\right) = 20 \left(\frac{61}{60}\right) \] This simplifies to: \[ 25a - 12b = \frac{61 \times 20}{60} = \frac{1220}{60} = \frac{61}{3} \quad \text{(Equation 2)} \] ### Step 3: Solve the System of Equations Now we have the system: 1. \(3a + 10b = -9\) 2. \(25a - 12b = \frac{61}{3}\) To eliminate \(b\), we can multiply the first equation by 12: \[ 12(3a + 10b) = 12(-9) \] This gives: \[ 36a + 120b = -108 \quad \text{(Equation 3)} \] Now, multiply the second equation by 10: \[ 10(25a - 12b) = 10\left(\frac{61}{3}\right) \] This gives: \[ 250a - 120b = \frac{610}{3} \quad \text{(Equation 4)} \] ### Step 4: Add Equations to Eliminate \(b\) Now, add Equation 3 and Equation 4: \[ (36a + 120b) + (250a - 120b) = -108 + \frac{610}{3} \] This simplifies to: \[ 286a = -108 + \frac{610}{3} \] Convert -108 to a fraction: \[ -108 = -\frac{324}{3} \] So: \[ 286a = -\frac{324}{3} + \frac{610}{3} = \frac{286}{3} \] Dividing both sides by 286: \[ a = \frac{1}{3} \] ### Step 5: Substitute \(a\) Back to Find \(b\) Substituting \(a = \frac{1}{3}\) back into Equation 1: \[ 3\left(\frac{1}{3}\right) + 10b = -9 \] This simplifies to: \[ 1 + 10b = -9 \] \[ 10b = -10 \quad \Rightarrow \quad b = -1 \] ### Step 6: Substitute \(a\) and \(b\) Back to Original Variables Recall: \[ a = \frac{1}{x + 2y} \quad \Rightarrow \quad x + 2y = 3 \] \[ b = \frac{1}{3x - 2y} \quad \Rightarrow \quad 3x - 2y = -1 \] ### Step 7: Solve the System of Linear Equations Now we have: 1. \(x + 2y = 3\) 2. \(3x - 2y = -1\) Adding these two equations: \[ x + 2y + 3x - 2y = 3 - 1 \] This simplifies to: \[ 4x = 2 \quad \Rightarrow \quad x = \frac{1}{2} \] Substituting \(x = \frac{1}{2}\) into \(x + 2y = 3\): \[ \frac{1}{2} + 2y = 3 \] \[ 2y = 3 - \frac{1}{2} = \frac{6}{2} - \frac{1}{2} = \frac{5}{2} \] \[ y = \frac{5}{4} \] ### Final Solution Thus, the solution to the system of equations is: \[ x = \frac{1}{2}, \quad y = \frac{5}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3c|15 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3a|18 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of equations: (1)/(2(x+2y))+(5)/(3(3x-2y))=(-3)/(2),quad (5)/(4(x+2y))-(3)/(5(3x-2y))=(61)/(60)

{:(3x - 2y = 4),(5x - 2y = 0):}

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

(3) 3x-2y=(5)/(2) (1)/(3)x+3y=-(4)/(3)

3 x + 2y = 12 , 5x - 2y = 4 .

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Solve for x and y : ( 3x )/( 2) - ( 5y )/( 3) = - 2, ( x)/(3) + ( y)/(2) = (13)/(6)

Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))

Solve the following system of equations: (2)/(3x+2y)+(3)/(3x-2y)=(17)/(5),quad (5)/(3x+2y)+(1)/(3x-2y)=2

NAGEEN PRAKASHAN-LINEAR EQUATIONS IN TWO VARIABLES -Exercise 3b
  1. {:((x)/(2) + y = 0.8),((7)/(x + (y)/(2)) = 10):}

    Text Solution

    |

  2. {:((15)/(x) + (2)/(y) = 17),((1)/(x) + (1)/(y)= (36)/(5)):}

    Text Solution

    |

  3. 1/16x+1/15y=9/20; 1/20x-1/27y=4/45

    Text Solution

    |

  4. {:((10)/(x + y) - (4)/(x - y)= -2),((15)/(x + y) + (7)/(x - y) = 10):}

    Text Solution

    |

  5. {:(2x + y = (7xy)/(3)),(x + 3y = (11xy)/(3)):}

    Text Solution

    |

  6. {:((1)/(2(x + 2y)) + (5)/(3(3x - 2y))=(-3)/(2)),((5)/(4(x + 2y)) - (3)...

    Text Solution

    |

  7. {:((4)/(x) + 3y = 14),((3)/(x) - 4y = 23):}

    Text Solution

    |

  8. {:((5)/(x - 1) + (1)/(y - 2) = 2),((6)/(x - 1) - (3)/(y - 2) = 1):}

    Text Solution

    |

  9. {:((2)/(sqrt(x))+ (3)/(sqrt(y)) = 2),((4)/(sqrt(x))-(9)/(sqrt(y)) = -1...

    Text Solution

    |

  10. Solve the following system of equations: 2(3u-v)=5u v ,\ \ \ \ 2(u+...

    Text Solution

    |

  11. {:(65x - 33y = 97),(33x - 65y = 1):}

    Text Solution

    |

  12. {:(13x + 11y = 70),(11x + 13y = 74):}

    Text Solution

    |

  13. {:(217x + 131y = 913),(131x + 217y = 827):}

    Text Solution

    |

  14. {:(152x - 378y = -74),(-378x + 152y = -604):}

    Text Solution

    |

  15. {:(x + y = a + b),(ax - by = a^(2) - b^(2)):}

    Text Solution

    |

  16. Solve: x/a+y/b=a+b x/(a^2)+y/(b^2)=2

    Text Solution

    |

  17. Solve the following system of linear equations (with rational denomina...

    Text Solution

    |

  18. 4x + (6)/(y) = 15 and 6x -(8)/(y) = 14, and hence, find p if y = px...

    Text Solution

    |

  19. Solve the following system of equations: (7x-2y)/(x y)=5,\ \ \ (8x+...

    Text Solution

    |

  20. Solve for (x - 1)^(2) and (y + 3)^(2), 2x^(2) - 5y^(2) - x - 27...

    Text Solution

    |