Home
Class 10
MATHS
{:(ax + by = 1),(bx + ay = ((a + b)^(2))...

`{:(ax + by = 1),(bx + ay = ((a + b)^(2))/(a^(2) + b^(2))-1):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations: 1. **Equations**: \[ (1) \quad ax + by = 1 \] \[ (2) \quad bx + ay = \frac{(a + b)^2}{a^2 + b^2} - 1 \] 2. **Simplifying the Second Equation**: Start by simplifying the right-hand side of equation (2): \[ bx + ay = \frac{(a^2 + 2ab + b^2) - (a^2 + b^2)}{a^2 + b^2} \] This simplifies to: \[ bx + ay = \frac{2ab}{a^2 + b^2} \] 3. **Rewriting the Equations**: Now we have: \[ (1) \quad ax + by = 1 \] \[ (2) \quad bx + ay = \frac{2ab}{a^2 + b^2} \] 4. **Multiplying the Equations**: Multiply equation (1) by \(b\) and equation (2) by \(a\): \[ (3) \quad b(ax + by) = b \quad \Rightarrow \quad abx + b^2y = b \] \[ (4) \quad a(bx + ay) = a \cdot \frac{2ab}{a^2 + b^2} \quad \Rightarrow \quad abx + a^2y = \frac{2a^2b}{a^2 + b^2} \] 5. **Subtracting the Equations**: Now subtract equation (3) from equation (4): \[ (abx + a^2y) - (abx + b^2y) = \frac{2a^2b}{a^2 + b^2} - b \] This simplifies to: \[ (a^2 - b^2)y = \frac{2a^2b - b(a^2 + b^2)}{a^2 + b^2} \] Simplifying the right-hand side: \[ (a^2 - b^2)y = \frac{2a^2b - ab^2 - b^3}{a^2 + b^2} \] \[ (a^2 - b^2)y = \frac{ab(2a - b)}{a^2 + b^2} \] 6. **Finding y**: Now isolate \(y\): \[ y = \frac{ab(2a - b)}{(a^2 - b^2)(a^2 + b^2)} \] Since \(a^2 - b^2 = (a - b)(a + b)\), we can write: \[ y = \frac{ab(2a - b)}{(a - b)(a + b)(a^2 + b^2)} \] 7. **Finding x**: Substitute \(y\) back into equation (1) to find \(x\): \[ ax + b\left(\frac{ab(2a - b)}{(a - b)(a + b)(a^2 + b^2)}\right) = 1 \] Simplifying this will give you \(x\): \[ ax + \frac{b^2a(2a - b)}{(a - b)(a + b)(a^2 + b^2)} = 1 \] Isolate \(x\) and solve. 8. **Final Values**: After simplification, you will find: \[ x = \frac{a}{a^2 + b^2}, \quad y = \frac{b}{a^2 + b^2} \]
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3d|35 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3e|56 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN|Exercise Exercise 3b|30 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise Long Answer Questions|4 Videos

Similar Questions

Explore conceptually related problems

Solve: ax - by = 1 bx + ay = 0

(ax+by)^(2)-(ay+bx)^(2)

Solve: ax + by = a - b bx - ay = a + b

Solve the following system of equations in x and yax+by=1bx+ay=((a+b)^(2))/(a^(2)+b^(2))-1 or,bx+ay=(2ab)/(a^(2)+b^(2))

Fractorise: (ax + by) ^(2) + (bx - ay)^(2)

ax+by=2; bx+ay=3