Home
Class 9
MATHS
Factorise 16x^(4)-81y^(4)....

Factorise `16x^(4)-81y^(4)`.

Text Solution

AI Generated Solution

To factorize the expression \( 16x^4 - 81y^4 \), we can follow these steps: ### Step 1: Identify the expression as a difference of squares We notice that \( 16x^4 \) and \( 81y^4 \) can be expressed as squares: \[ 16x^4 = (4x^2)^2 \quad \text{and} \quad 81y^4 = (9y^2)^2 \] Thus, we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|18 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : 16x^(4)-y^(4)

Factorise : x^(4)-1

Factorise 4x^(2)-9y^(2)

Factorize: x^(4)-y^(4) (ii) 16x^(4)-81x^(4)-(y+z)^(4)( iv )2x-32x^(5)3a^(4)-48b^(4)(vi)81x^(4)-121x^(2)

Factorise : x^(4) + y^(4) - 2x^(2)y^(2)

Factorise 49x^(2) - 16y^(2) .

Factorise : 36x^(4) - 84x^(2)y^(2) +49y^(4)

Factorise : 81-16x^2

Factorise x^(2)+4x+4