Home
Class 9
MATHS
Factorise x^(2)+(1)/(x^(2))-3....

Factorise `x^(2)+(1)/(x^(2))-3`.

A

`(x-(1)/(x)+a)(x+(1)/(x)-1)`

B

`(x+(1)/(x)+a)(x-(1)/(x)-1)`

C

`(x-(1)/(x)+a)(x-(1)/(x)+1)`

D

`(x-(1)/(x)+a)(x-(1)/(x)-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^2 + \frac{1}{x^2} - 3 \), we can follow these steps: ### Step 1: Rewrite the expression Start with the expression: \[ x^2 + \frac{1}{x^2} - 3 \] ### Step 2: Combine \( x^2 \) and \( \frac{1}{x^2} \) We can rewrite \( x^2 + \frac{1}{x^2} \) using the identity: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] So, we can substitute this into our expression: \[ \left( x + \frac{1}{x} \right)^2 - 2 - 3 = \left( x + \frac{1}{x} \right)^2 - 5 \] ### Step 3: Recognize the difference of squares Now, we have: \[ \left( x + \frac{1}{x} \right)^2 - 5 \] This can be factored using the difference of squares formula \( a^2 - b^2 = (a - b)(a + b) \): \[ \left( x + \frac{1}{x} - \sqrt{5} \right)\left( x + \frac{1}{x} + \sqrt{5} \right) \] ### Step 4: Write the final factorized form Thus, the factorized form of the expression \( x^2 + \frac{1}{x^2} - 3 \) is: \[ \left( x + \frac{1}{x} - \sqrt{5} \right)\left( x + \frac{1}{x} + \sqrt{5} \right) \]

To factorise the expression \( x^2 + \frac{1}{x^2} - 3 \), we can follow these steps: ### Step 1: Rewrite the expression Start with the expression: \[ x^2 + \frac{1}{x^2} - 3 \] ...
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Problems From NCERT/exemplar|18 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise x ^(2) + (1)/( x^(2)) + 2 - 3x - (3)/(x).

Factorise: x^(2)-36

Factorise: x ^(3) + (1)/(x ^(3)) - 2

Factorise 8x^(2)y^(3)-x^(5)

Factorise 6-x-x^2

Factorise: 64-x ^(2)

Factorise: x^(2) + x-56

Factorise 12x^(2)-7x+1

Factorise x^(2)-(a+(1)/(a))x+1 .

Factorise a^(2)x^(2)+(ax^(2)+1)x+a