Home
Class 9
MATHS
If p(y)=y^(3)+y^(2)+y+1 find : (i) y(1...

If `p(y)=y^(3)+y^(2)+y+1` find :
(i) y(1) (ii) y(-1)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the polynomial \( p(y) = y^3 + y^2 + y + 1 \) at two specific values: \( y = 1 \) and \( y = -1 \). ### Step-by-Step Solution: **Step 1: Calculate \( p(1) \)** Substituting \( y = 1 \) into the polynomial: \[ p(1) = (1)^3 + (1)^2 + (1) + 1 \] Calculating each term: \[ = 1 + 1 + 1 + 1 \] Adding them together: \[ = 4 \] So, \( p(1) = 4 \). --- **Step 2: Calculate \( p(-1) \)** Now substituting \( y = -1 \) into the polynomial: \[ p(-1) = (-1)^3 + (-1)^2 + (-1) + 1 \] Calculating each term: \[ = -1 + 1 - 1 + 1 \] Adding them together: \[ = 0 \] So, \( p(-1) = 0 \). --- ### Final Answers: (i) \( p(1) = 4 \) (ii) \( p(-1) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2c|24 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2d|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If p(y)=4+3y-y^(2)+5y^(3) , find (i) p (0) , (ii) p(2) , (iii) p(-1) .

If p(y)=y^(3)-5y^(2)+5y+10 , then find p(2) +p(-2).

If p(y)=3y^(4)-5y^(3)+y^(2)+8 , then p(-1) will be

Find the centre and radius of each of the following circles : (i) (x - 3)^(2) + (y- 1) ^(2) = 9 (ii) (x - (1)/(2) ) ^(2) + ( y + (1)/(3) ) ^(2) = (1)/(16) (iii) (x + 5) ^(2) + ( y- 3 ) ^(2) = 20 (iv) x ^(2) + (y- 1 ) ^(2) = 2

If p(y) =y(y-1)(y+2) then find the value of p(0)+p(1)+p(-2)

Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)

If P(y)=y^(2)-[3sqrt(2)]y+1 , then find p(3sqrt(2))

Find p(0), p(1) and p(2) for each of the following polynomials : (i) p(y)=y^(2)-y+1 (ii) p(t)=2+t+2t^(2)-t^(3) (iii) p(x)=x^(3) (iv) p(x)=(x-1)(x+1)

Find the value of each of the following : (i) p(x)=3x+7 " at" x=1 " " (ii) q(y)=y^(3)-3y^(2)+sqrt(3) " at" y=1 (iii) p(a)=a^(4)+6a^(2)-6a+3 at a=m