Home
Class 9
MATHS
Find the zero of the polynomial : (i) ...

Find the zero of the polynomial :
`(i) p(x)=x-3 " " (ii) q(x)=3x-4 " " (iii) p(x)=4x-7 " " (iv) q(x)=px+q, p ne 0`
`(v)p(x)=4x " " (vi) p(x)=(3)/(2)x-1`

Text Solution

Verified by Experts

The correct Answer is:
`(i) 3, (ii) (4)/(3), (iii) (7)/(4), (iv) -(q)/(p), (v) 0, (vi) (2)/(3)`
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2c|24 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2d|5 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2a|8 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2

Find a zero of the polynomial (i) p(x)=x-3 (ii) q(x)=3x+2

Find the zeroes of the polynomial ineach of the followning . (i) p(x)=x-4 " " (ii) g(x)=3-6x (iii) q(x)=2x-7 " " (iv) h(y)=2y

Find the zero of the polynomial : p(x)=x-5 (ii) q(x)=x+4 (iii) r(x)=2x+5 (iv) f(x)=3x+1 (v) g(x)=5-4x (vi) h(x)=6x-2 (vii) p(x)=ax,ane0 (viii) q(x)=4x

Find the zero of the polynomial in each of the following eases: (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=a x , a!=0 (vii) p(x)=c x+d , c!=0, c , d are real numbers.

Find the zero of the polynomial in each of the followimg cases : (i) p(x)=x+5 (ii) p(x)=x-5 (iii) p(x)=2x+5 (iv) p(x)=3x-2 (v) p(x)=3x (vi) p(x)=ax, a ne 0 (vii) p(x)=cx+d, c ne 0, c,d are real numbers .

Verify whether the following are zeroes of the polynomial, indicated against them. (i) p(x)=3x+1, x=-1/3 (ii) p(x)=5x-pi, x=4/5 (iii) p(x)=x^2-1, x=1,-1 (iv) p(x)=(x+1)(x+2), x=-1,2 (v) p(x)=x^2, x=0 (vi) p(x)=l x+m , x=-m/l (vii)

Verify whether the following are zeroes of the polynomial, indicated against them . (i) p(x)=3x+1,x=-(1)/(3) (ii) p(x)=5x-pi,x=(4)/(5) (iii) p(x)=x^(2)-1,x=1,-1 (iv) p(x)=(x+1),(x-2),x=-1,2 (v) p(x)=x^(2),x=0 (vi) p(x)=lx+m,x=(-m)/(l) (vii) p(x)=3x^(2)-1,x=-(1)/(sqrt(3)),(2)/(sqrt(3)) (viii) p(x)=2x+1,x=(1)/(2)

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2 (ii) p(x) = x^4 - 3x^2 + 4x - 5, g(x) = x^2 + 1 - x (iii) p(x) = x^4 - 5x + 6, g(x) = 2 - x^2

If p(x)=4x^(2)-3x+6 find : (i) p(4) (ii) p(-5)