Home
Class 9
MATHS
Factorise the following expressions : ...

Factorise the following expressions :
`(i) ax-ay+bx-by " " (ii) x^(2)-x-ax+a " " (iii) x^(4)+x^(3)+x^(2)+x`
`(iv) 16(a+b)^(2)-4a-4b " " (v) x^(2)+(1)/(x^(2))+2-3x-(3)/(x) " " (vi) x^(2)-((a)/(b)+(b)/(a))x+1`
`(vii) x^(2)+(a-(1)/(a))x-1 " " (viii)ab(x^(2)+y^(2)+xy(a^(2)+b^(2)) " "(ix) (ax+by)^(2)+(bx-ay)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's factorize the given expressions step by step. ### (i) Factorize \( ax - ay + bx - by \) 1. **Group the terms**: \[ (ax - ay) + (bx - by) \] 2. **Factor out common terms**: \[ a(x - y) + b(x - y) \] 3. **Factor out \((x - y)\)**: \[ (x - y)(a + b) \] **Final Answer**: \((x - y)(a + b)\) ### (ii) Factorize \( x^2 - x - ax + a \) 1. **Group the terms**: \[ (x^2 - x) + (-ax + a) \] 2. **Factor out common terms**: \[ x(x - 1) - a(x - 1) \] 3. **Factor out \((x - 1)\)**: \[ (x - 1)(x - a) \] **Final Answer**: \((x - 1)(x - a)\) ### (iii) Factorize \( x^4 + x^3 + x^2 + x \) 1. **Factor out \(x\)**: \[ x(x^3 + x^2 + x + 1) \] 2. **Group the polynomial**: \[ x(x^3 + 1 + x^2 + x) \] 3. **Factor \(x^3 + 1\)** using the sum of cubes: \[ x(x + 1)(x^2 - x + 1) \] **Final Answer**: \(x(x + 1)(x^2 - x + 1)\) ### (iv) Factorize \( 16(a + b)^2 - 4a - 4b \) 1. **Rewrite the expression**: \[ 4[4(a + b)^2 - a - b] \] 2. **Group the terms**: \[ 4[4(a + b)^2 - (a + b)] \] 3. **Factor out \((a + b)\)**: \[ 4(a + b)(4(a + b) - 1) \] **Final Answer**: \(4(a + b)(4(a + b) - 1)\) ### (v) Factorize \( x^2 + \frac{1}{x^2} + 2 - 3x - \frac{3}{x} \) 1. **Rewrite the expression**: \[ (x^2 - 3x + 2) + \left(\frac{1}{x^2} - \frac{3}{x} + 1\right) \] 2. **Factor the first part**: \[ (x - 1)(x - 2) \] 3. **Factor the second part**: \[ \left(\frac{1}{x} - 1\right)^2 \] 4. **Combine**: \[ (x - 1)(x - 2) + \left(\frac{1 - x}{x}\right)^2 \] **Final Answer**: \((x - 1)(x - 2) + \left(\frac{1 - x}{x}\right)^2\) ### (vi) Factorize \( x^2 - \left(\frac{a}{b} + \frac{b}{a}\right)x + 1 \) 1. **Rewrite the expression**: \[ x^2 - \left(\frac{a^2 + b^2}{ab}\right)x + 1 \] 2. **Use the quadratic formula to find roots**: \[ x = \frac{\frac{a^2 + b^2}{ab} \pm \sqrt{\left(\frac{a^2 + b^2}{ab}\right)^2 - 4}}{2} \] 3. **Factor using the roots**: \[ \left(x - \frac{a}{b}\right)\left(x - \frac{b}{a}\right) \] **Final Answer**: \(\left(x - \frac{a}{b}\right)\left(x - \frac{b}{a}\right)\) ### (vii) Factorize \( x^2 + \left(a - \frac{1}{a}\right)x - 1 \) 1. **Use the quadratic formula**: \[ x = \frac{-(a - \frac{1}{a}) \pm \sqrt{(a - \frac{1}{a})^2 + 4}}{2} \] 2. **Factor using roots**: \[ \left(x - r_1\right)\left(x - r_2\right) \] **Final Answer**: \(\left(x - r_1\right)\left(x - r_2\right)\) ### (viii) Factorize \( ab(x^2 + y^2 + xy(a^2 + b^2)) \) 1. **Rewrite the expression**: \[ ab\left(x^2 + y^2 + xy(a^2 + b^2)\right) \] 2. **Group terms**: \[ ab\left((x + ay)(x + by)\right) \] **Final Answer**: \(ab\left((x + ay)(x + by)\right)\) ### (ix) Factorize \( (ax + by)^2 + (bx - ay)^2 \) 1. **Expand the squares**: \[ a^2x^2 + 2abxy + b^2y^2 + b^2x^2 - 2abxy + a^2y^2 \] 2. **Combine like terms**: \[ (a^2 + b^2)(x^2 + y^2) \] **Final Answer**: \((a^2 + b^2)(x^2 + y^2)\) ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2 E|22 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2c|24 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Factorize each of the following expressions: a^(2)x^(2)+(ax^(2)+1)x+a3ax-6ay-8by+4bx

Factorize following expressions (i) a^2-4a+3+2b-b^2" (ii)" x^(4)+324" (iii)"x^4-y^2+2x^2+1 (iv) 4a^4-5a^2+1" (v)"x^6-7x^2-6

Factorize each of the following expressions: x^(2)-2ax-2ba+bx(2)x^(3)-2x^(2)y+3xy^(2)-6y^(3)abx^(2)+(ay-b)x-y(4)(ac+by)^(2)+(bx-ay)^(2)

Which of the following are polynomials ? (i) x^(2)-3x+1 " " (ii) x^(2)+5x+2 " "(iii) x-(1)/(y) " " (iv) x^(7)+8 " " (v) x^(3)+sqrt(x)-2 (vi) sqrt(2)x^(2)+x-1 " " (vii) (3x-1)(x+5) " " (viii) (x-(3)/(x))(x+2) " " (ix)2x^(2)-1 (x) x+(1)/(sqrt(x))+2

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))

Factorize each of the following expressions: 16(a-b)^(3)-24(a-b)^(2) (2) ab(x^(2)+1)+x(a^(2)+b^(2))a^(2)x^(2)+(ax^(2)+1)x+a(4)a(a-2b-c)+2bc

Find (dy)/(dx) for the following : (i) y=x^(7//2) (ii) y=x^(-3) (iii) y=x (iv) y=x^(5)+x^(3)+4x^(1//2)+7 (v) y=5x^(4)+6x^(3//2)+9x (vi) y=ax^(2)+bx+C (Vii) y=3x^(5)-3x-1/x

Factorize following expressions (i) x^(2)+3x-40" (ii)"x^2-3x-40" (iii)"x^(2)+5x-14 (iv) x^2-3x-4" (v)"x^2-3x-40" (vi)"3x^2-10x+8 (vii) 12x^2-x-35" (viii)"3x^2-5x-2" (ix)"3x^2-7x+4 (x) 7x^2-8x+1" (xi)"2x^2-17x+26" (xii)"3a^2-7a-6 (xiii) 14a^2+a-3

(i) (3x^(2) +4x-5)/x (ii) ((x^(3) +1)(x-2))/x^(2) (iii) (x-4)/(2sqrtx) (iv) (( 1+x)sqrtx)/root3(x) (v) (ax^(2) +bx+c)/sqrtx (vi) (a+b cos x)/sin x