Home
Class 9
MATHS
Factorise : (i) (x-y)^(3)+(y-z)^(3)+(z...

Factorise :
`(i) (x-y)^(3)+(y-z)^(3)+(z-x)^(3)`
`(ii) (x-2y)^(3)+(2y-4z)^(3)+(4z-x)^(3)`
`(iv) (3sqrt(2)a-5sqrt(3)b)^(3)+(5sqrt(3)b-7sqrt(5)c)^(3)+(7sqrt(5)c-3sqrt(2)a)^(3)`.

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the given expressions, we will use the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This identity can be rearranged to: \[ a^3 + b^3 + c^3 = 3abc \quad \text{if } a + b + c = 0 \] ### (i) Factorize \( (x-y)^3 + (y-z)^3 + (z-x)^3 \) 1. **Identify \( a, b, c \)**: - Let \( a = x - y \) - Let \( b = y - z \) - Let \( c = z - x \) 2. **Calculate \( a + b + c \)**: \[ a + b + c = (x - y) + (y - z) + (z - x) = 0 \] 3. **Apply the identity**: Since \( a + b + c = 0 \), we can use the identity: \[ (x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x) \] ### Final Result: \[ (x-y)^3 + (y-z)^3 + (z-x)^3 = 3(x - y)(y - z)(z - x) \] --- ### (ii) Factorize \( (x-2y)^3 + (2y-4z)^3 + (4z-x)^3 \) 1. **Identify \( a, b, c \)**: - Let \( a = x - 2y \) - Let \( b = 2y - 4z \) - Let \( c = 4z - x \) 2. **Calculate \( a + b + c \)**: \[ a + b + c = (x - 2y) + (2y - 4z) + (4z - x) = 0 \] 3. **Apply the identity**: Since \( a + b + c = 0 \): \[ (x - 2y)^3 + (2y - 4z)^3 + (4z - x)^3 = 3(x - 2y)(2y - 4z)(4z - x) \] ### Final Result: \[ (x-2y)^3 + (2y-4z)^3 + (4z-x)^3 = 3(x - 2y)(2y - 4z)(4z - x) \] --- ### (iii) Factorize \( (3\sqrt{2}a - 5\sqrt{3}b)^3 + (5\sqrt{3}b - 7\sqrt{5}c)^3 + (7\sqrt{5}c - 3\sqrt{2}a)^3 \) 1. **Identify \( a, b, c \)**: - Let \( a = 3\sqrt{2}a - 5\sqrt{3}b \) - Let \( b = 5\sqrt{3}b - 7\sqrt{5}c \) - Let \( c = 7\sqrt{5}c - 3\sqrt{2}a \) 2. **Calculate \( a + b + c \)**: \[ a + b + c = (3\sqrt{2}a - 5\sqrt{3}b) + (5\sqrt{3}b - 7\sqrt{5}c) + (7\sqrt{5}c - 3\sqrt{2}a) = 0 \] 3. **Apply the identity**: Since \( a + b + c = 0 \): \[ (3\sqrt{2}a - 5\sqrt{3}b)^3 + (5\sqrt{3}b - 7\sqrt{5}c)^3 + (7\sqrt{5}c - 3\sqrt{2}a)^3 = 3(3\sqrt{2}a - 5\sqrt{3}b)(5\sqrt{3}b - 7\sqrt{5}c)(7\sqrt{5}c - 3\sqrt{2}a) \] ### Final Result: \[ (3\sqrt{2}a - 5\sqrt{3}b)^3 + (5\sqrt{3}b - 7\sqrt{5}c)^3 + (7\sqrt{5}c - 3\sqrt{2}a)^3 = 3(3\sqrt{2}a - 5\sqrt{3}b)(5\sqrt{3}b - 7\sqrt{5}c)(7\sqrt{5}c - 3\sqrt{2}a) \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2d|5 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

Factorise: (5x - y) ^(3) + (y - 4z) ^(3) + (4z - 5x) ^(3)

Factorize : 2sqrt(2)x^(3)+3sqrt(3)y^(3)+sqrt(5)(5-3sqrt(6)xy)

Factorize: ((x)/(2)+y+(z)/(3))^(3)+((x)/(3)-(2y)/(3)+z)^(3)+(-(5x)/(6)-(y)/(3)-(4z)/(3))^(3)

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are

If x=3-sqrt(7),y=sqrt(8)-sqrt(6),z=sqrt(7)-sqrt(5) then

x=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) and y=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)) then find x^(2)+y^(2)=?

If x=sqrt(5)+sqrt(3) and y=sqrt(5)-sqrt(3), then x^(4)-y^(4)

If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)),y=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3)) find the value of (x-y)^(2)

The square root of (7+3sqrt(5))(7-3sqrt(5)) is sqrt(5)(b)2(c)4(d)3sqrt(5)

NAGEEN PRAKASHAN-POLYNOMIALS-Exercise 2 E
  1. Evaluate without multiplying directly : (i) 33xx27 " " (ii) 103xx9...

    Text Solution

    |

  2. Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(...

    Text Solution

    |

  3. Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b...

    Text Solution

    |

  4. Evaluate using formula : (i) (188)^(2) " " (ii) (9.4)^(2) " " (i...

    Text Solution

    |

  5. (i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac. (ii) ...

    Text Solution

    |

  6. Expand : (i) (2x+3y)^(3) " " (ii) (5y-3x)^(3) " " (iii) (2a+3b)...

    Text Solution

    |

  7. Evaluate (2x-3y+5)^(3).

    Text Solution

    |

  8. If a+2b=5, then show that a^(3)+8b^(3)+30ab=125.

    Text Solution

    |

  9. If 2x-3y=10 and xy=16, find the value of 8x^(3)-27y^(3).

    Text Solution

    |

  10. Evaluate : (i) (98)^(3) " " (ii) (598)^(3) " " (iii) (1003)^(3)

    Text Solution

    |

  11. Factorise : (i) 4a^(2)+9b^(2)+16c^(2)+12ab-24bc-16ca (ii) (4)/(9)x...

    Text Solution

    |

  12. Verify : (i) x^(3)+y^(3)=(x+y)(x^(2)-xy+y^(2)) " " (ii) x^(3)-y^(...

    Text Solution

    |

  13. Factorise : (i) 9a^(3)-27b^(3) " " (ii) a^(3)-343 " " (iii) a^(...

    Text Solution

    |

  14. Find the product : (i) (x+3)(x^(2)-3x+9) " " (ii) (7+5b)(49-35b+2...

    Text Solution

    |

  15. Factorise : (i) a^(3)+27b^(3)+8c^(3)-18abc " " (ii) 2sqrt(2)a^(3)...

    Text Solution

    |

  16. Find the product : (i) (a+2b+4c)(a^(2)+4b^(2)+16c^(2)-2ab-8bc-4ca) ...

    Text Solution

    |

  17. Factorise : (i) (x-y)^(3)+(y-z)^(3)+(z-x)^(3) (ii) (x-2y)^(3)+(2y-...

    Text Solution

    |

  18. Without actually calculating the cube find the value of the following ...

    Text Solution

    |

  19. Verify that x^(3)+y^(3)+z^(3)-3xyz=(1)/(2)(x+y+z)[(x-y)^(2)+(y-z)^(2)+...

    Text Solution

    |

  20. If x+y+z=0show that x^3+y^3+z^3=3x y z.

    Text Solution

    |