Home
Class 9
MATHS
Evaluate (a+2b)^(3)....

Evaluate `(a+2b)^(3)`.

A

`a^(3)+6a^(2)b+12ab^(2)+8b^(3)`

B

`a^(3)-6a^(2)b-12ab^(2)+8b^(3)`

C

`a^(3)-6a^(2)b+12ab^(2)-8b^(3)`

D

None of These

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \((a + 2b)^3\), we can use the identity for the cube of a binomial, which states: \[ (a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 \] In our case, we have \(a\) and \(b\) where \(b\) is replaced by \(2b\). Therefore, we can rewrite the expression as: \[ (a + 2b)^3 = a^3 + (2b)^3 + 3a^2(2b) + 3a(2b)^2 \] Now, let's break this down step by step: ### Step 1: Calculate \(a^3\) This remains as \(a^3\). ### Step 2: Calculate \((2b)^3\) \[ (2b)^3 = 2^3 \cdot b^3 = 8b^3 \] ### Step 3: Calculate \(3a^2(2b)\) \[ 3a^2(2b) = 6a^2b \] ### Step 4: Calculate \(3a(2b)^2\) \[ (2b)^2 = 4b^2 \quad \text{so,} \quad 3a(2b)^2 = 3a \cdot 4b^2 = 12ab^2 \] ### Step 5: Combine all terms Now, we can combine all the calculated terms together: \[ (a + 2b)^3 = a^3 + 8b^3 + 6a^2b + 12ab^2 \] Thus, the final result is: \[ \boxed{a^3 + 8b^3 + 6a^2b + 12ab^2} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2 E|22 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ( 2a + 3b ) - ( 2a - 3b )

Evaluate : (7)/(2a+3b)-(5)/(2a-3b)

Evaluate : (i) (a+6b)^(2) " " (ii) (3x-4y)^(2) " " (iii) (2a-b+c)^(2)

Evaluate a^2+ b(b+2)^2 if a=3,b=-2

Evaluate : ( -2 ) times ( -3 ) times b times (-1 )

Find maximum value of a^(2)b^(3) if a+b=2 . When a & b are positive numbers

If a/b=2/3 then find the values of (4a+3b)/(3b)

If (2a+ b)/(a+4b) = 3 , then find the value of (a+b)/(a+2b)

If (2a+b)/(a+4b)=3, then find the value of (a+b)/(a+2b)

If (2a+b)/(a +4b)=3 , then find the value of (a+b)/(a+2b)