Home
Class 9
MATHS
Factorise (a+b)^(3)-a-b....

Factorise `(a+b)^(3)-a-b`.

A

`(a+b)(a+b+1)(a-b-1)`

B

`(a+b)(a+b+1)(a+b-1)`

C

`(a+b)(a-b+1)(a+b-1)`

D

`(a-b)(a+b+1)(a+b-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \((a+b)^{3} - a - b\), we can follow these steps: ### Step 1: Rewrite the Expression Start with the given expression: \[ (a+b)^{3} - a - b \] ### Step 2: Group Terms We can group the last two terms: \[ (a+b)^{3} - (a + b) \] ### Step 3: Factor Out Common Terms Notice that both terms contain \((a+b)\). We can factor \((a+b)\) out: \[ = (a+b)^{3} - 1(a+b) \] This can be rewritten as: \[ = (a+b)\left((a+b)^{2} - 1\right) \] ### Step 4: Recognize the Difference of Squares The expression \((a+b)^{2} - 1\) is a difference of squares, which can be factored using the identity \(x^{2} - y^{2} = (x+y)(x-y)\): \[ = (a+b)\left((a+b) + 1\right)\left((a+b) - 1\right) \] ### Step 5: Final Factorization Thus, the fully factored form of the expression is: \[ = (a+b)(a+b+1)(a+b-1) \] ### Final Answer The factorization of \((a+b)^{3} - a - b\) is: \[ (a+b)(a+b+1)(a+b-1) \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|16 Videos
  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Exercise 2 E|22 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorise : (a+b)^(3)+(b+c)^(3)+(c+a)^(3)-3(a+b)(b+c)(c+a)

Factorise (2a + 3b)^(2) - (3a - 2b)^(2) .

Factorise =(a^(6)-b^(6))

Factorise : a^2-b^2-a-b

Factorise a^(3)+(b-a)^(3)-b^(3)

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)

Factorise 12a^(3) b^(3) - 3ab .