Home
Class 9
MATHS
If a+b=7 and ab=12 find the value of a^(...

If `a+b=7` and `ab=12` find the value of `a^(2)-ab+b^(2)`.

A

`13`

B

`37`

C

`15`

D

`50`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 - ab + b^2 \) given that \( a + b = 7 \) and \( ab = 12 \), we can use the following steps: ### Step 1: Use the identity for \( a^2 + b^2 \) We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting the values of \( a + b \) and \( ab \): \[ a^2 + b^2 = (7)^2 - 2(12) \] ### Step 2: Calculate \( (a + b)^2 \) Calculating \( (7)^2 \): \[ (7)^2 = 49 \] ### Step 3: Calculate \( 2ab \) Calculating \( 2(12) \): \[ 2(12) = 24 \] ### Step 4: Substitute back to find \( a^2 + b^2 \) Now substituting back into the equation: \[ a^2 + b^2 = 49 - 24 = 25 \] ### Step 5: Substitute into \( a^2 - ab + b^2 \) Now we need to find \( a^2 - ab + b^2 \). We can express this as: \[ a^2 - ab + b^2 = a^2 + b^2 - ab \] Substituting the values we found: \[ a^2 - ab + b^2 = 25 - 12 \] ### Step 6: Calculate the final value Calculating: \[ a^2 - ab + b^2 = 25 - 12 = 13 \] Thus, the value of \( a^2 - ab + b^2 \) is \( \boxed{13} \). ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

If a+b=7 and ab=12, find the value of a^(2)+b^(2)

If a-b=5 and ab=12, find the value of a^(3)+b^(2)

If a+b=10 and ab=16 find the value of a^(2)-ab+b^(2) and a^(2)+ab+b^(2)

If a+b=10 and ab-=16, find the value of a^(2)-ab+b^(2) and a^(2)+ab+b^(2)

If a + b = 9 and ab = 10, find the value of a^2+b^2.

If 2a+b=12 and ab=15 , then find the value of 8a^(3)+b^(3) .

If a = 2 and b = 3, find the value of (i) a + b (ii) a^(2) + ab (iii) ab - a^(2) (iv) 2a - 3b (v) 5a^(2) - 2ab (vi) a^(3) - b^(3)

If a+b=10 and ab=16 then find the value of a^2+2b^2 and a^2+ab+b^2

If a + b + c = 6 and ab+bc+ca= 12. find the value of a^2+b^2+c^2

If a+b=7 and ab=10, then find a−b.