Home
Class 9
MATHS
Simplify ((a^(2)-b^(2))^(3)+(b^(2)-c^(2)...

Simplify `((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \frac{(a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3}{(a - b)^3 + (b - c)^3 + (c - a)^3} \] we can use the identity for the sum of cubes and some algebraic manipulation. ### Step-by-Step Solution: **Step 1: Identify the Numerator and Denominator** We have: Numerator: \((a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3\) Denominator: \((a - b)^3 + (b - c)^3 + (c - a)^3\) **Step 2: Use the Sum of Cubes Identity** Recall the identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] If \(x + y + z = 0\), then: \[ x^3 + y^3 + z^3 = 3xyz \] **Step 3: Set \(x = a^2 - b^2\), \(y = b^2 - c^2\), \(z = c^2 - a^2\)** Now, we check if \(x + y + z = 0\): \[ (a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2) = 0 \] This simplifies to: \[ a^2 - b^2 + b^2 - c^2 + c^2 - a^2 = 0 \] So, we can apply the identity: \[ (a^2 - b^2)^3 + (b^2 - c^2)^3 + (c^2 - a^2)^3 = 3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2) \] **Step 4: Apply the Identity to the Denominator** Now, let \(x = a - b\), \(y = b - c\), \(z = c - a\). We check if \(x + y + z = 0\): \[ (a - b) + (b - c) + (c - a) = 0 \] Thus, we can apply the same identity: \[ (a - b)^3 + (b - c)^3 + (c - a)^3 = 3(a - b)(b - c)(c - a) \] **Step 5: Substitute Back into the Expression** Now substituting back into our original expression: \[ \frac{3(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}{3(a - b)(b - c)(c - a)} \] The \(3\) cancels out: \[ = \frac{(a^2 - b^2)(b^2 - c^2)(c^2 - a^2)}{(a - b)(b - c)(c - a)} \] **Step 6: Factor the Numerator** We can factor \(a^2 - b^2\) as \((a - b)(a + b)\), \(b^2 - c^2\) as \((b - c)(b + c)\), and \(c^2 - a^2\) as \((c - a)(c + a)\): \[ = \frac{(a - b)(a + b)(b - c)(b + c)(c - a)(c + a)}{(a - b)(b - c)(c - a)} \] **Step 7: Cancel Common Factors** Now, we can cancel the common factors \((a - b)\), \((b - c)\), and \((c - a)\): \[ = (a + b)(b + c)(c + a) \] ### Final Answer: Thus, the simplified expression is: \[ (a + b)(b + c)(c + a) \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer Questions)|10 Videos
  • NUMBER SYSTEM

    NAGEEN PRAKASHAN|Exercise Revision Exercise (short Answer Questions)|10 Videos
  • PROBABILITY

    NAGEEN PRAKASHAN|Exercise Revision Exercise (very Short Answer /short Answer Questions)|10 Videos

Similar Questions

Explore conceptually related problems

Factorize : (a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)

If a^(2)+ b^(2) + c^(2)=0 , then what is ((a^(4)-b^(4))^(3)+(b^(4)-c^(4))^(3)+(c^(4)-a^(4))^(3))/((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3)) equal to?

What will be factors of (a^(2)-b^(2))^(3) + (b^(2) -c^(2))^(3) + (c^(2) - a^(2))^(3)

Factorise: 9a^(3)b^(2)c-27a^(2)b^(3)c^(2)-36a^(2)b^(2)c^(3)

Prove: a^(3)+b^(3)+c^(3)-3abc=(1)/(2)(a+b+c){(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}

Simplify (a+b)(2a-3b+c)-(2a-3b)c

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

Simplify the following: (6) (i) (a^(3)b^(2)c-ab^(3)c)-(3abc^(3)-a^(3)b^(2)c)-(4ab^(3)c+2abc^(3))

.Factorise: (2a-b-c)^(3)+(2b-c-a)^(3)+(2c-a-b)^(3)