Home
Class 9
MATHS
Prove that the circle drawn on any one o...

Prove that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.

Text Solution

Verified by Experts

Given : `A` `DeltaABC`in which `AB=AC` and a circle is drawn by taking AB as diameter which intersects the side BC of triangle at D.
To prove : `BD=DC`
Construction: Join AD.
Proof: Since angle in a semi-circle is a right angle, therefore
`angle ADB=90^@`
Now, in `DeltaABD` and `Delta ACD`, we have
`AB=AC` (given)
`angle ADB=AD` (each equal to `90^@`)
and, `AD=AD` (Common)
`rArrDeltaABDcongDelta ACD` (by `SAS` congruency)
`rArrBD=DC`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    NAGEEN PRAKASHAN|Exercise Exercise 10a|22 Videos
  • CIRCLE

    NAGEEN PRAKASHAN|Exercise Exercise 10b|19 Videos
  • AREA OF PARALLELOGRAMS AND TRIANGLES

    NAGEEN PRAKASHAN|Exercise Revision Exercise (long Answer Question)|5 Videos
  • CO-ORDINATE GEOMETRY

    NAGEEN PRAKASHAN|Exercise Exercise|8 Videos

Similar Questions

Explore conceptually related problems

Prove that the medians to the two equal sides of an isosceles triangle are equal.

The angles opposite to equal sides of an isosceles triangle are ..........

Prove that the perpendiculars drawn from the vertices of equal angles of an isosceles triangle to the opposite sides are equal.

Each of the equal sides of an isosceles triangle is 13 cm and its base is 24 cm. The area of the triangle is

Find the area of an isosceles triangle having the base xcm and one side ycm

Prove that the bisector of the vertical angle of an isosceles triangle bisects the base at right angles.

Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.

prove that the circle drawn on any focal distance as diameter touches the auxiliary circle in an ellipse

Prove that the circle drawn with any side of a rhombus as a diameter,posses through the point of intersection of its diagonals.