Home
Class 11
MATHS
(cos x)/("log"(e)x)...

`(cos x)/("log"_(e)x)`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13G|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13E|21 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

int(1)/(x cos^(2)(log_(e)x))dx

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

Find the range of f(x)=cos(log_(e){x})

int{sin(log_(e)x)+cos(log_(e)x)}dx is equal to

lim_(x rarr0)(3+alpha sin x+beta cos x+log_(e)(1-x))/(3tan^(2)x)=(1)/(3) ,then 2 alpha-beta is equal to

If (dy)/(dx)-y log_(e) 2 = 2^(sin x)(cos x -1) log_(e) 2 , then y =

If |[e^x, sin x, 1],[ cos x ,log_(e)(1+x^(2)), 1],[ x, x^(2), 1]| =a+bx+cx^(2) then (a+b)^(2) is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))} , then f'( e )

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to