Home
Class 11
MATHS
(x^(2))/(e^(x)+x^(2))...

`(x^(2))/(e^(x)+x^(2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13G|10 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13E|21 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

The integral int_(2)^(4)(e^(x^(2)))/(e^(x^(2))+e^((36-12x+x^(2))))dx is equal to

Function f:R rarr R;f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is :

f:R to R is defined by f(x)= =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) , is

Let f:R rarr R defined by f(x)=(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))), then f(x) is

Function defined by f(x) =(e^(x^(2))-e^(-x^(2)))/(e^(x^(2))+e^(-x^(2))) is injective in [alpha -2 ,oo) the least value of alpha is

lim_(xrarr0)((2+2x+x^(2))-2e^(x))/(x^(2)) equals

If f:[0,oo[rarr R is the function defined by f(x)=(e^(z^(2))-e^(-x^(2)))/(e^(x^(2))-e^(-x^(2))), then check whether f(x) is injective or not.

If y = log [ sece^(x^(2)) ] then (dy)/(dx) = (a) 2xe^(x^(2))(tan e^(x^(2))) (b) 2xe^(x^(2))(sec x^(2))(tan e^(x^(2))) (c) x^(2)e^(x^(2))tan e^(x^(2)) (d) e^(x^(2))tan e^(x^(2))

int x(1+x^(2))e^(x^(2))dx