Home
Class 11
MATHS
lim(xrarr-1) (x^(10)+x^(5)+1)/(x-1)...

`lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)`

Text Solution

Verified by Experts

`underset(xrarr-1)"lim"(x^(10)+x^(5)+1)/(x-1)`
`=((-1)^(10)+(-1)^(5)+1)/(-1-1)`
`=(1-1+1)/(-2)=-(1)/(2)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Evalute lim_(xrarr1) (x^(15)-1)/(x^(10)-1)

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Find the following limits : lim_(xrarr1) {(x^(1/5)-1)/(x^(1/100)-1)}

Evaluate lim_(xrarr0)((1+x)^(n)-1)/(x)

The value of lim_(xrarr1)(x+x^(2)+….+x^(n)-n)/(x-1) is

Evalvate lim_(xrarr0)((1+x)^(4)-1)/(x).

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .

lim_(xrarr1) (sum_(x=1)^(n)x^(r)-n)/(x-1) is equal to