Home
Class 11
MATHS
lim(xrarr1) (ax^(2)+bx+c)/(cx^(2)+bx+a)a...

`lim_(xrarr1) (ax^(2)+bx+c)/(cx^(2)+bx+a)a+b+cne0`

Text Solution

AI Generated Solution

To solve the limit \( \lim_{x \to 1} \frac{ax^2 + bx + c}{cx^2 + bx + a} \) given that \( a + b + c \neq 0 \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) into the expression We start by substituting \( x = 1 \) into the limit expression: \[ \frac{a(1)^2 + b(1) + c}{c(1)^2 + b(1) + a} = \frac{a + b + c}{c + b + a} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(ax^(2)+bx+c)/(cx^(2)+bx+a),a+b+c!=0

lim_(xrarr0) (sinax)/(bx)

lim_(xrarr0) (ax+b)/(cx+1)

Let alpha,beta(alpha

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

If lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2 , then (a, b, c) is

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

lim_(xrarr0) (sinax+bx)/(ax+si nbx),a,b,a+bne0

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

lim_(xrarr0) (sin ax+bx)/(ax+sin bx),ane0,bne0,a+bne 0