Home
Class 11
MATHS
lim(xrarr-2)((1)/(x)+(1)/(2))/(x+2)...

`lim_(xrarr-2)((1)/(x)+(1)/(2))/(x+2)`

Text Solution

AI Generated Solution

To solve the limit \( \lim_{x \to -2} \frac{\frac{1}{x} + \frac{1}{2}}{x + 2} \), we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = -2 \) into the expression to check if it results in an indeterminate form. \[ \frac{\frac{1}{-2} + \frac{1}{2}}{-2 + 2} = \frac{-\frac{1}{2} + \frac{1}{2}}{0} = \frac{0}{0} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(xrarr2) (sqrt(3-x)-1)/(2-x)

Evaluate: lim_(xrarr1) ((2)/(x^(2)-1)+(1)/(1-x))

If lim_(xrarr oo) (1+(a)/(x)+(b)/(x^2))^(2x)=e^2 , then

Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))

If A=lim_(xrarr-2)(tanpix)/(x+2)+lim_(xrarroo)(1+(1)/(x^(2)))^(x) , then

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to