Home
Class 11
MATHS
Suppose f(x)={{:(a+bx,xlt1),(4,x=1),(b-a...

Suppose `f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):}`
and if `lim_(xrarr1) f(x)=f(1)` what are possible values of a and b ?

Text Solution

Verified by Experts

`f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):}`
at x=0
LHL ` =underset(xrarr0^(-))"lim"f(x)`
`underset(hrarr0)"lim"f(0-h)`
`=underset(hrarr0)"lim"(h)/(|-h|)`
`=underset(hrarr0)"lim"(h)/(-h)=underset(hrarr0)"lim"(-1)=-1`
Let ` 0-h=x`
`rArr 0-hrarr0`
`rArr hrarr0`
RHL`=underset(xrarr0^(+))"lim"f(x)`
`=underset(hrarr0)"lim"f(0+h)`
`=underset(hrarr0)"lim"( h)/(|h|)` ltbr. `=underset(hrarr0)"lim"(h)/(h)= underset(hrarr0)"lim"(1)=1`
`because LHLneRHL`
`therefore underset(xrarr0)"lim"f(x)` does not exist
Let `0+h=x`
`rArr0+hrarr0`
`rArr hrarr0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(a+bx,xlt1),(4,x=1),(b-ax,xgt1):} and underset(xrarr1)f(x)=f(1) , then find the values of 'a' and 'b '

Suppose f(x)={(a+bx, x 1):} and if lim_(xto1) f(x)=f(1), what are the values of a and b?

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xrarr1)f(x).

f(x)={(x+1,; xlt1), (2x-3,; xgeq1):}, evaluate lim_(x rarr 1)f(x).

Let f(x)={{:(1+x^(2)",",0lexle1),(2-x",",xgt1.):} Show that lim_(xrarr0)f(x) does not exist.

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

If f(x) is defined as f(x)={{:(x,0le,xle1),(2,x,=1),(20x,x,gt1):} then show that lim_(Xrarr1) f(x)=1

If f(x)=[(x,xlt1),(x^(2),1lexle4),(8sqrt(x),xgt4):} the find f^(-1)(x) .

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?