Home
Class 11
MATHS
Let a(1),a(2),.......,a(n) be fixed real...

Let `a_(1),a_(2),.......,a_(n)` be fixed real numbers and define a function `f(x)=(x-a_(1))(x-a_(2)) ......(x-a_(n))`, what is lim `f(x)`? For some `anea_(1),a_(2),.........a_(n)`, compute `lim_(Xrarr1) ` f(x)

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the limit of the function \( f(x) = (x - a_1)(x - a_2) \cdots (x - a_n) \) as \( x \) approaches certain values. Let's break it down step by step. ### Step 1: Define the function The function is defined as: \[ f(x) = (x - a_1)(x - a_2)(x - a_3) \cdots (x - a_n) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

Let a_(1),a_(2),...,a_(n) be fixed real numbers and let f(x)=(x-a_(1))(x-a_(2))(x-a_(3))...(x-a_(n)). Find lim_(xtoa_(1))f (x). If anea_(1),a_(2),..,a_(n),Compute lim_(xtoa) f(x).

If a_(1), a_(2),…….a_(n) are real numbers and the function f(x)=(x-a_(1))^(2)+(x-a_(2))^(2)+…..+(x-a_(n))^(2) attains its minimum value for some x = p, then p is

If a_(1),a_(2)......a_(n) are n positive real numbers such that a_(1).......a_(n)=1. show that (1+a_(1))(1+a_(2))......(1+a_(n))>=2^(n)

let f(x)=a_(0)+a_(1)x^(2)+a_(2)x^(4)+.........a_(n)x^(2n) where 0

Suppose p(x)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(n)x^(n). If |p(x)| =0, prove that |a_(1)+2a_(2)+...+na_(n)|<=1

Let f(x)=a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)+......+a_(n),(a_(0)!=0) if a_(0)+a_(1)+a+_(2)+......+a_(n)=0 then the root of f(x) is

Evaluate : lim_(x rarr0)((1-cos(a_(1)x)*cos(a_(2)x)*cos(a_(3)x))......cos(a_(n)x))/(x^(2)) where a_(1),a_(2),a_(3).........a_(n)in R

Let a_(1),a_(2),...,a_(n) .be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 Prove that lim_(n rarr oo)((a_(n))/(2^(n-1)))=(2)/(pi)

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+.......+a_(2n)x^(2n) find the value a_(0)+a_(1)+a_(2)+......+a_(2)n

lim_(x rarr oo)[((x+a_(1))(x+a_(2))dots.......(x+a_(n)))^((1)/(n))-x]