Home
Class 11
MATHS
If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1...

If ` f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):}`
for what value (s) of a does `lim_(xrarra) f(x)` exists?

Text Solution

AI Generated Solution

To determine the values of \( a \) for which \( \lim_{x \to a} f(x) \) exists, we first need to analyze the given piecewise function: \[ f(x) = \begin{cases} |x| + 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ |x| - 1 & \text{if } x > 0 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)={(x-1",",xlt0),(1/4",",x=0),(x^2",",xgt0):} , then

For the function f(x)= {(x-1,x lt 0),(1/4,x=0) ,(x^2 , xgt0):} then lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

If f(x) is defined as follows: f(x){{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

If f(x)={mx^(2)+n,x 1}. For what integers m and n does both lim_(x rarr0)f(x) and lim_(x rarr1)f(x) exist?

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

f(x)={(0,x≤0),(x-3,xgt0):} The function f(x) is

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then

If f(x)={(x^nsin(1/(x^2)),x!=0), (0,x=0):}, (n in I), then (a) lim_(xrarr0)f(x) exists for n >1 (b) lim_(xrarr0)f(x) exists for n<0 (c) lim_(xrarr0)f(x) does not exist for any value of n (d) lim_(xrarr0)f(x) cannot be determined