Home
Class 11
MATHS
If f(x)= {{:(mx^(2)+n,xlt0),(nx+m,0ltxle...

If `f(x)= {{:(mx^(2)+n,xlt0),(nx+m,0ltxle1),( nx^(3)+m,xgt1):}`
For what integers m and n does both `lim_(xrarr0) f(x)` and `lim_(xrarr1) f(x)` exist?

Text Solution

Verified by Experts

at x=0
`LHL=underset(xrarr0^(-))"lim"f(x)`
`=underset(hrarr0)"lim"f( 0-h)`
`=underset(hrarr0)"lim"m( 0-h)^(2)+n=n`
RHL`=underset(xrarr0^(+))"lim"f(x)`
`=underset(hrarr0)"lim"f(0+h)`
`=underset(hrarr0)"lim"n(0+h)+m=m`
`because underset(xrarr0)"lim"f(x)` exists.
Let `0- h=x`
`rArr0-hrarr0`
`rArr hrarr0`
Let `0+h=x`
`rArr 0+hrarr0`
`rArr hrarr0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX-13H|9 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)={mx^(2)+n,x 1}. For what integers m and n does both lim_(x rarr0)f(x) and lim_(x rarr1)f(x) exist?

If f(x)=[mx^(2)+n,x 1. For what integers m and n does both (lim)_(x rarr1)f(x)

If f(x)={{:(mx^(2)+n",", x lt 0), (nx+m",", 0 le x le 1), (nx^(3)+m",", x gt 1):} . For what integers m and n does lim_(x to 0)f(x)" and "lim_(x to 1)f(x) exist ?

Evaluate lim_(xrarr0) f(x) , where

If f(x)={{:(mx^2+x+n,"," x lt 0),(nx +m ,"," 0 le x le 1),(2nx^3+x^2-2x+m,","x gt1):} and lim_(xto0)f(x) and lim_(xto1) f(x) exist then

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

Prove that lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n .