Home
Class 11
MATHS
For the function f(x)=((x^(100))/(100)...

For the function
`f(x)=((x^(100))/(100)+(x^(99))/(99)+ .......+(x^(2))/2)+x+1`.
prove that f(1)=100f(0).

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the function \( f(x) \) at \( x = 1 \) and \( x = 0 \), and then show that \( f(1) = 100f(0) \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \frac{x^{98}}{98} + \ldots + \frac{x^2}{2} + x + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN|Exercise EX -13.1|32 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

For the function f(x)=(x^(100))/(100)+(x^(99))/(99)++(x^(2))/(2)++(x^(2))/(2)+x+1. Prove that f'(1)=100f'(0)

For the function f(x)=(x^(100))/(100)+(x^(99))/(99)+....x^(2)/2+x+1 , f'(1)=mf ' (0), where m is equal to

For the function 'f(x)^(n prime prime)=(x^(^^)(100))/(100)+(x^(^^)(99))/(99)+...+(x^(^^)2)/2+x+1. Prove f'(1)=f(0)*100

Find the range of the function f(x)=-x^2-100

For a function f(x),f(0)=0 and f'(x)=(1)/(1+x^(2)), prove that f(x)+f(y)=f((x+y)/(1-xy))

If f(x)=(x-1)^(100)*(x-2)^(2(99))*(x-3)^(3(98))..........(x-100)^(100) then the value of (f^(')(101))/(f(101))=k, then (k)/(2525)=

If f: R to [0,∞) be a function such that f(x -1) + f(x + 1) = sqrt3(f(x)) then prove that f(x + 12) = f(x) .

Let f(x)=x+(1)/(2)x+(1)/(2)x+(1)/(2)x+......oo Compute the value of f(100).f'(100)