Home
Class 12
MATHS
Solution of tan ^(-1) (1 + x) + tan ^(-1...

Solution of `tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2)` is:

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

If tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 then x=?