Home
Class 12
MATHS
If a1, a2,a3, ,an is an A.P. with commo...

If `a_1, a_2,a_3, ,a_n` is an A.P. with common difference `d ,` then prove that `"tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(11+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)`

A

`((n-1)d)/(1+ a_(1)a_(n))`

B

`(nd)/(1+ a_(1)a_(2))`

C

`((n+1)d)/(1+ a_(1)a_(n))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),a_(n) is an A.P.with common difference d, then prove that tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=((n-1)d)/(1+a_(1)a_(n))

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_(1),a_(2),a_(3),….a_(n) is a.p with common difference d then tan{tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3))) +..+ tan^(-1)((d)/(1+a_(n-1)a_(n)))} is equal to

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_n))

If a_1,\ a_2,\ a_3,\ ,\ a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_3a_4))++tan^(-1)(d/(1+a_(n-1)a_n))}

If a_(1), a_(2), a_(3) are in arithmetic progression and d is the common diference, then tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))=

If a_1,a_2,a_3,...,a_n be in AP whose common difference is d then prove that sum_(i=1)^n a_ia_(i+1)=n{a_1^2+na_1d+(n^2-1)/3 d^2} .