Home
Class 12
MATHS
If sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)...

If `sin ^(-1) (1-x)-2 sin ^(-1) x = (pi)/(2)` then x = ?

A

`0,(1)/(2),1`

B

`0,(1)/(2)`

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation using the identity We know that: \[ \sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2} \] Thus, we can rewrite \( \sin^{-1}(1-x) \) as: \[ \sin^{-1}(1-x) = \frac{\pi}{2} - \cos^{-1}(1-x) \] Substituting this into the original equation gives us: \[ \frac{\pi}{2} - \cos^{-1}(1-x) - 2\sin^{-1}(x) = \frac{\pi}{2} \] This simplifies to: \[ -\cos^{-1}(1-x) - 2\sin^{-1}(x) = 0 \] or \[ \cos^{-1}(1-x) = -2\sin^{-1}(x) \] ### Step 2: Use the cosine identity We know that \( \cos(-\theta) = \cos(\theta) \), so: \[ \cos^{-1}(1-x) = 2\sin^{-1}(x) \] Taking the cosine of both sides gives us: \[ 1-x = \cos(2\sin^{-1}(x)) \] ### Step 3: Apply the double angle formula Using the double angle formula for cosine: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Let \( \theta = \sin^{-1}(x) \). Then: \[ \cos(2\sin^{-1}(x)) = 1 - 2\sin^2(\sin^{-1}(x)) = 1 - 2x^2 \] So we have: \[ 1 - x = 1 - 2x^2 \] ### Step 4: Rearranging the equation Now, rearranging gives: \[ -x = -2x^2 \] or \[ 2x^2 - x = 0 \] ### Step 5: Factor the equation Factoring out \( x \): \[ x(2x - 1) = 0 \] This gives us two solutions: \[ x = 0 \quad \text{or} \quad 2x - 1 = 0 \Rightarrow x = \frac{1}{2} \] ### Step 6: Check the solutions 1. For \( x = 0 \): \[ \sin^{-1}(1-0) - 2\sin^{-1}(0) = \sin^{-1}(1) - 0 = \frac{\pi}{2} \] This satisfies the equation. 2. For \( x = \frac{1}{2} \): \[ \sin^{-1}(1 - \frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2 \cdot \frac{\pi}{6} = \frac{\pi}{6} - \frac{\pi}{3} = \frac{\pi}{6} - \frac{2\pi}{6} = -\frac{\pi}{6} \] This does not satisfy the equation. ### Conclusion The only solution is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.1|14 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2b|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

Solve sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2)

Solve sin^(-1) (1 - x) - 2 sin^(-1) x = (pi)/(2)

Solve sin^(-1)x + sin^(-1) 2x = (pi)/(3)

sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2), then x is equal to (A)0,(1)/(2)(B)1,(1)/(2)(C)0(D)(1)/(2)

If sin ^ (- 1) x + sin ^ (- 1) y = (pi) / (2), then prove that sin ^ (- 1) x = cos ^ (- 1) y

(sin ^ (- 1) x) ^ (2) + (sin ^ (- 1) y) ^ (2) +2 (sin ^ (- 1) x) (sin ^ (- 1) y) = pi ^ (2), then x ^ (2) + y ^ (2) is equal to