Home
Class 12
MATHS
tan^(-1)sqrt(3)-sec^(-1)(-2) is equal t...

`tan^(-1)sqrt(3)-sec^(-1)(-2)` is equal to

A

`pi`

B

`-(pi)/(3)`

C

`(pi)/(3)`

D

`(2pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B

`tan^(-1)sqrt(3)-sec^(-1)(-2)`
`=tan^(-1)(tan""(pi)/(3))-[pi-sec^(-1)2]`
`=(pi)/(3)-pi+sec^(-1)(sec""(pi)/(3))`
`=(pi)/(3)-pi+(pi)/(3)=-(pi)/(3)`
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2.2|21 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Exericse 2c|10 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2)=(pi)/(3)

For the principal value,evaluate tan^(-1)sqrt(3)-sec^(-1)(-2)

Find the principal value of tan^(-1)sqrt(3)-sec^(-1)(-2)

Find the value of tan^(-1)(sqrt(3))-sec^(-1)(-2) .

(tan^(-1)(sqrt3)-sec^(-1)(-2))/(cosec^(-1)(-sqrt2)+cos^(-1)(-(1)/(2))) is equal to

(tan ^(-1) (sqrt(3))-sec ^(-1)(-2))/("cosec"^(-1)(-sqrt(2))+cos^(-1)""(-(1)/(2)))=

Find the value of tan^(-1)sqrt(3)+sec^(-1)2

Find the value of tan^(-1)sqrt(3)+sec^(-1)2 .