Home
Class 12
MATHS
If sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2), t...

If `sin^(-1)(1-x)-2 sin^(-1)x=(pi)/(2)`, then `x` is equal to

A

`0,(1)/(2)`

B

`1,(1)/(2)`

C

`0`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Substitute Variables Let \( \theta = \sin^{-1}(x) \). Then, we can rewrite the equation as: \[ \sin^{-1}(1-x) - 2\theta = \frac{\pi}{2} \] ### Step 2: Isolate \( \sin^{-1}(1-x) \) Rearranging the equation gives us: \[ \sin^{-1}(1-x) = \frac{\pi}{2} + 2\theta \] ### Step 3: Apply the Sine Function Taking the sine of both sides, we have: \[ 1 - x = \sin\left(\frac{\pi}{2} + 2\theta\right) \] ### Step 4: Use the Sine Addition Formula Using the sine addition formula, we know that: \[ \sin\left(\frac{\pi}{2} + 2\theta\right) = \cos(2\theta) \] Thus, we can rewrite the equation as: \[ 1 - x = \cos(2\theta) \] ### Step 5: Express \( \cos(2\theta) \) Using the double angle identity for cosine, we have: \[ \cos(2\theta) = 1 - 2\sin^2(\theta) \] Substituting this into our equation gives: \[ 1 - x = 1 - 2\sin^2(\theta) \] ### Step 6: Simplify the Equation Cancelling the 1 from both sides results in: \[ -x = -2\sin^2(\theta) \] This simplifies to: \[ x = 2\sin^2(\theta) \] ### Step 7: Substitute Back for \( \sin(\theta) \) Since \( \sin(\theta) = x \), we substitute back: \[ x = 2x^2 \] ### Step 8: Rearrange the Equation Rearranging gives us: \[ 2x^2 - x = 0 \] ### Step 9: Factor the Equation Factoring out \( x \): \[ x(2x - 1) = 0 \] ### Step 10: Solve for \( x \) Setting each factor to zero gives: 1. \( x = 0 \) 2. \( 2x - 1 = 0 \) → \( x = \frac{1}{2} \) ### Conclusion Thus, the solutions for \( x \) are: \[ x = 0 \quad \text{or} \quad x = \frac{1}{2} \]

To solve the equation \( \sin^{-1}(1-x) - 2 \sin^{-1}(x) = \frac{\pi}{2} \), we can follow these steps: ### Step 1: Substitute Variables Let \( \theta = \sin^{-1}(x) \). Then, we can rewrite the equation as: \[ \sin^{-1}(1-x) - 2\theta = \frac{\pi}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

sin^(-1)(1-x)-2sin^(-1)x=(pi)/(2), then x is equal to (A)0,(1)/(2)(B)1,(1)/(2)(C)0(D)(1)/(2)

Number of solutions of the equation,sin^(-1)(1-x)-4sin^(-1)(x)=(pi)/(2), is equal to

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to