Home
Class 12
MATHS
tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y)is equa...

`tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y)`is equal to(A) `pi/2` (B) `pi/3` (C) `pi/4` (D) `(-3pi)/4`

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(4)`

D

`(-3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C

` tan^(-1)""((x)/(y))-tan^(-1)""((x-y)/(x+y))`
`tan^(-1)""(x)/(y)-tan^(-1)(((x)/(y)-1)/((x)/(y)+1))`
`tan^(-1)""(x)/(y)-(tan^(-1)""(x)/(y)-tan^(-1)""1)`
`=tan^(-1)1=(pi)/(4)`
Promotional Banner

Topper's Solved these Questions

  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|8 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|44 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|9 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

If tan^(-1)x+tan^(-1)y=(pi)/(4), then (1+x)(1+y) is equal to

The value of int_-1^3 [tan^-1(x/(x^2+1))+tan^-1((x^2+1)/x)]dx= (A) pi/2 (B) 2pi (C) pi (D) pi/4

If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)) , then alpha-beta= pi/6 (b) pi/3 (c) pi/2 (d) -pi/3

Range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x is (a) ((pi)/(4),(3 pi)/(4))( b) [(pi)/(4),(3 pi)/(4)]( c) {(pi)/(4),(3 pi)/(4)}(d) none of these

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-1)x (b) 0 (c) pi/2 (d) pi