Home
Class 12
MATHS
Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3t...

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n` both `f(x)a n dg(x)` are odd functions `f(x)` is monotonic function `f(x)=g(x)` has no real roots `int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(x+sin x)/(1+cos x)dx=f(x)tan g(x)+C , then, f(x)=

If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is

If int(x^(2)-x+1)/((x^(2)+1)^((3)/(2)))e^(x)dx=e^(x)f(x)+c, then f(x) is an even function f(x) is a bounded function the range of f(x) is (0,1)f(x) has two points of extrema

If f(x)=tan^(-1)x,g(x)=tan^(-1)((1+x)/(1-x))" for "|x|lt1 , show that f'(x)=g'(x)andg(x)-f(x)=pi/4 .

If int(dx)/(x^(2)+ax+1)=f(x(x))+c, then f(x) is inverse trigonometric function for |a|>2f(x) is logarithmic function for |a| 2g(x) is rational function for |a|<2

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

If f(x)=int(x^(8)+4)/(x^(4)-2x^(2)+2)dx and f(0)=0, then (a) f(x) is an odd function (b) f(x) has range R(c)f(x) has at least one real root (d) f(x) is a monotonic function.

If f(x) and g(x) are two functions with g (x) = x - 1/x and fog (x) =x^(3) -1/x^(3) then f(x) is

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is