Home
Class 10
MATHS
If sec theta-tan theta=x then prove that...

If `sec theta-tan theta=x` then prove that `cos theta=(2x)/(1+x^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta+tan theta = x , prove that sin theta= (x^2-1)/(x^2+1)

If sec theta+tan theta=x, then sec theta=(a)(x^(2)+1)/(x) (b) (x^(2)+1)/(2x)(c)(x^(2)-1)/(2x) (d) (x^(2)-1)/(x)

If sec theta - tan theta = x , show that sec theta = 1/2 (x +1/x) and tan theta = 1/2 (1/x -x) .

If x=a sec theta,y=b tan theta, then prove that (x^(2))/(a^(2))-(y^(2))/(b^(2))=1

tan theta+sec theta=x show that 2tan theta=x-(1)/(x),2sec theta=x+(1)/(x) hence prove that sin theta=(x^(2)-1)/(x^(2)+1)

If cot theta + tan theta = x and sec theta - cos theta = y then

If cot theta+tan theta=x and sec theta-cos theta=y prove that (x^(2)y)^((2)/(3))-(xy^(2))^((2)/(3))=1

If sec theta=x+(1)/(4x), then prove that sec theta+tan theta=2x or (1)/(2x)

Prove that (sec theta+tan theta -1)/(tan theta -sec theta +1)=cos theta/(1-sin theta)