Home
Class 11
MATHS
Express the following expression in the ...

Express the following expression in the form of `a + i b``((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-isqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \(\frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})}\) in the form \(a + ib\), we can follow these steps: ### Step 1: Simplify the Numerator The numerator is \((3 + i\sqrt{5})(3 - i\sqrt{5})\). This is in the form of \( (a + b)(a - b) = a^2 - b^2 \). \[ = 3^2 - (i\sqrt{5})^2 \] \[ = 9 - (i^2 \cdot 5) \] Since \(i^2 = -1\), we have: \[ = 9 - (-5) = 9 + 5 = 14 \] ### Step 2: Simplify the Denominator The denominator is \((\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})\). Distributing the negative sign: \[ = \sqrt{3} + \sqrt{2}i - \sqrt{3} + i\sqrt{2} \] The \(\sqrt{3}\) terms cancel out: \[ = \sqrt{2}i + \sqrt{2}i = 2\sqrt{2}i \] ### Step 3: Combine the Results Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{14}{2\sqrt{2}i} \] ### Step 4: Simplify the Fraction To simplify \(\frac{14}{2\sqrt{2}i}\): \[ = \frac{14}{2\sqrt{2}} \cdot \frac{1}{i} \] \[ = \frac{7}{\sqrt{2}} \cdot \frac{-i}{-1} = -\frac{7i}{\sqrt{2}} \] ### Step 5: Express in the Form \(a + ib\) We can express \(-\frac{7i}{\sqrt{2}}\) as: \[ 0 + i\left(-\frac{7}{\sqrt{2}}\right) \] Thus, we have \(a = 0\) and \(b = -\frac{7}{\sqrt{2}}\). ### Final Answer The expression in the form \(a + ib\) is: \[ 0 + i\left(-\frac{7}{\sqrt{2}}\right) \]

To express the given expression \(\frac{(3 + i\sqrt{5})(3 - i\sqrt{5})}{(\sqrt{3} + \sqrt{2}i) - (\sqrt{3} - i\sqrt{2})}\) in the form \(a + ib\), we can follow these steps: ### Step 1: Simplify the Numerator The numerator is \((3 + i\sqrt{5})(3 - i\sqrt{5})\). This is in the form of \( (a + b)(a - b) = a^2 - b^2 \). \[ = 3^2 - (i\sqrt{5})^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|20 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT|Exercise EXERCISE 5.4|6 Videos
  • BINOMIAL THEOREM

    NCERT|Exercise SOLVED EXAMPLES|17 Videos
  • CONIC SECTIONS

    NCERT|Exercise EXERCISE 11.1|15 Videos

Similar Questions

Explore conceptually related problems

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib qquad ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

express in a+ib form: ((3+isqrt(5))(3-isqrt(5)))/((sqrt(3)+isqrt(2))-(sqrt(3)-isqrt(2)))

Express each one of the following in the standard form a+ib:((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

Evaluate: (iv) ((3+sqrt5i)(3-sqrt5i))/((sqrt3+sqrt2i)-(sqrt3-sqrt2i))

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

Express in the form a+ib : (sqrt(3)-i sqrt(2))/(2sqrt(3)-i sqrt(3))

Express the following in the form of a+ib: (-sqrt3+sqrt(-2))(2sqrt3-i)

Simplify each of the following expressions: (i) (3+sqrt(3))(2+sqrt(2)) (ii) (3+sqrt(3))(3-sqrt(3)) (iii) (sqrt(5)-sqrt(2))(sqrt(5)+sqrt(2))