Home
Class 12
MATHS
Show that 5xlt=8sinx-sin2xlt=6xfor0lt=xl...

Show that `5xlt=8sinx-sin2xlt=6xfor0lt=xlt=pi/3dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation (sinx+cosx)^(1+sin2x)=2, when 0lt=xlt=pi

Prove that following inequalities sinxlt=xlt=tanx\ AA\ in [0,pi/2]

If f(x)=int_(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt (pi)/2 then

Find the local maxima and local minima, if any, of the followig functions. Find also the local maximum and the local minimum values, as the case may be : h(x)=sinx+cosx, 0lt xlt(pi)/(2)

Evaluate the following integral: int_0^9f(x)dx ,\ w h e r e\ f(x){sinx ,\ 0lt=xlt=pi//2 1,pi/2lt=xlt=3e^(x-3),\ 3lt=xlt=9

The relation f is defined by f(x)={x^2,""0lt=xlt=3 3x ,""""3lt=xlt=10 The relating g is defined by g(x)={x^2,""0lt=xlt=3 3x ,""""2lt=xlt=10 Show that f is a function and g is not a function.

Find the intervals in which f(x)=sinx+|sinx|, 0

If f(x)=m a xi mu m{x^3, x^2,1/(64)}AAx in [0,oo),t h e n f(x)={x^2,0lt=xlt=1x^3,x >0 f(x)={1/(64),0lt=xlt=1/4x^2,1/4 1 f(x)={1/(64),0lt=xlt=1/8x^2,1/8 1 f(x)={1/(64),0lt=xlt=1/8x^3,x >1/8

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1