Home
Class 12
MATHS
The value of the determinant [(1^2, 2^2,...

The value of the determinant `[(1^2, 2^2, 3^2, 4^2) ,(2^2, 3^2 ,4^2,5^2) ,(3^2, 4^2,5^2 ,6^2) ,(4^2, 5^2, 6^2, 7^2)]` is equal to `1` b. `0` c. `2` d. `3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the determinant |{:(1^(2),2^(2),3^(2),4^(2)),(2^(2),3^(2),4^(2),5^(2)),(3^(2),4^(2),5^(2),6^(2)),(4^(2),5^(2),6^(2),7^(2)):}| is

Find the value of the determinant |2^2 2^3 2^4 2^3 2^4 2^5 2^4 2^5 2^6| .

If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)] , then a^(2) + b^(2) is equal to

2^5 - 3^4 + 4^3 - 5^2 + 7^2 = (6)^2 + sqrt?

The value of 3/(1^2. 2^2)+5/(2^2. 3^2)+7/(3^2. 4^2)+9/(4^2. 5^2)+(11)/(5^2. 6^2)+(13)/(6^2. 7^2)+(15)/(7^2. 8^2)+(17)/(8^2. 9^2)+(19)/(9^2. 10^2) is 1/(100) (b) (99)/(100) (c) 1 (d) (101)/(100)

If |3^2+k4^2 3^2+3+k4^2+k5^2 4^2+4+k5^2+k6^2 5^2+5+k|=0 then the value of k is- a. 2 b.1 c.-1 d. 0

The area of the quadrilateral ABCD where A(0,4,1), B(2,3,-1), C(4,5,0) and D(2,6,2), is equal to

(D) Find the rank of the matrix A= [[1,2,3,0],[2,4,3,2],[3,2,1,3],[6,8,7,5]]

Let U= {1, 2, 3, 4, 5, 6, 7, 8,9}, A={1, 2, 3, 4}, B = {2, 4, 6, 8) and C={3, 4, 5, 6}. Find A'