Home
Class 11
MATHS
If alpha, beta, gamma are the roots of t...

If `alpha, beta, gamma` are the roots of the equation `x^3 + px^2 + qx + r = 0,` then the value of `(alpha - 1/(beta gamma))(beta - 1/(gamma alpha))(gamma - 1/(alpha beta))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then find he value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta))

If alpha , beta , gamma are the roots of the equation px^3 - qx + r = 0 , then the value of alpha + beta + gamma is

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum (1)/(alpha beta ) =

If alpha, beta, gamma are roots of the equation x^(3) + px^(2) + qx + r = 0 , then sum(alpha - beta )^(2) =

If alpha, beta, gamma are roots of the equation x^(3) - px^(2) + qx - r = 0 , then sum alpha^(2) beta =

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to