Home
Class 12
MATHS
Let f(x)=x/((1+x^n)^(1/ n)) for ngeq2 a...

Let `f(x)=x/((1+x^n)^(1/ n))` for `ngeq2` and `g(x)=(f(ofo ...of)(x)` Then `intx^(n-2)g(x)dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x/(1+x^n)^(1/n) for nge2 and g(x)=ubrace(fofo…of)_("f occurs n times")(x) . Then intx^(n-2)g(x)dx equals (A) 1/(n(n-1))(1+nx^n)^(1-1/n)+K (B) 1/(n-1)(1+nx^n)^(1-1/n)+K (C) 1/(n(n+1))(1+nx^n)^(1+1/n)+K (D) 1/(n+1)(1+nx^n)^(1-1/n)+K

Let f(x)=(x)/((1+x^n)^((1)/(n)) for n ge 2 and g(x)=("fofo……………………..of")(x)/(" f occurs n times") . Then x^(n-2)g(x)dx equals .

Let f(x)=(x)/((1+x^(n))^(1//n)) for n ge 2 and g(x)=underset("n times")underbrace(fofo ..."of"(x)) , then int x^(n-2)g(x)dx equals to

If f(x)=(x)/((1+x^(n))^(1//n)) "for n" ge 2 and g(x) = underset("f occurs n times")ubrace(("fofo....of"))(x). "Then",intx^(n-2)g(x) dx equal

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

Let f(x)=(1)/(1+x) and let g(x,n)=f(f(f(….(x)))) , then lim_(nrarroo)g(x, n) at x = 1 is

If g is the inverse of f and f'(x) = 1/(2+x^n) , then g^(1)(x) is equal to