Home
Class 12
MATHS
The value of the integral int(cos^3x+cos...

The value of the integral `int(cos^3x+cos^5x)/(sin^2x+sin^4x)dxi s` `sinx-6tan^(-1)(sinx)+C` `sinx-2(sinx)^(-1)+C` `sinx-2(sinx)^(-1)-6tan^(-1)(sinx)+C` `sinx-2(sinx)^(-1)+5tan^(-1)(sinx)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos^3x+cos^5x)/(sin^2x+sin^4x)dx= (A) sinx-6tan^-1(sinx)+c (B) sinx-2(sinx)^-1-6tan^-1(sinx)+c (C) sin^-1x-2(sinx)^-1+5tan^-1(sinx)+c (D) none of these

tan^(-1)((cosx+sinx)/(cos x-sinx))

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

Evaluate int(cos x)/((1-sinx)(2-sinx))dx.

tan^(-1) [(cos x)/(1-sinx)]

Find- tan^-1((cosx+sinx)/(cosx-sinx))

Find- tan^-1[(cosx-sinx)/(cosx+sinx)]

int tan^(-1)sqrt((1-sinx)/(1+sinx))dx.

The value of int(cos xdx)/((sinx-1)(sinx-2)) is equal to