Home
Class 12
MATHS
int(sin^6x)/(cos^8x)\ dx= tan7x+C (b) (...

`int(sin^6x)/(cos^8x)\ dx=` `tan7x+C` (b) `(tan^7x)/7+C` (c) `(tan7x)/7+C` (d) `sec^7x+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^(6)x)/(cos^(8)x)dx=tan7x+C(b)(tan^(7)x)/(7)+C (c) (tan7x)/(7)+C(d)sec^(7)x+C

int(sin^(2)6x-cos^(2)7x)dx=

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

If int(sin^(4)x)/(cos^(8)x)dx=atan^(7)x +btan^(5)x+C , then

int sec^(2)x tan^7 xdx

int_(0)^(pi//2) (tan^(7)x)/(cot^(7)x+ tan^(7)x)dx

int((sec^(2)x-7))/(sin^(7)x)dx is equal to (i) (tan x)/(sin^(7)x)+C (ii) (cos x)/(sin^(7)x)+C( iii) (sin x)/(cos^(7)x)+C( iv )(sin x)/(tan^(7)x)+C

int_(0)^(pi//2)(tan^(7)x)/(cot^(7)x + tan^(7)x)dx is equal to