Home
Class 11
MATHS
The centroid of an equilateral triangle ...

The centroid of an equilateral triangle is (0, 0). If two vertices of the triangle lie on `x+y=2sqrt(2),` then one of them will have its coordinates. (a) `(sqrt(2)+sqrt(6),sqrt(2)-sqrt(6))` (b)`(sqrt(2)+sqrt(3),sqrt(2)-sqrt(3))` (c)`(sqrt(2)+sqrt(5),sqrt(2)-sqrt(5))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The centroid of an equilateral triangle is (0,0). If two vertices of the triangle lie on x+y=2sqrt2 , then one of them will have its coordinates

(sqrt(6+2sqrt(5)))(sqrt(6-2sqrt(5)))

The value of 2(sqrt(2)+sqrt(6))/(3sqrt(2+sqrt(3)))+sqrt(2+sqrt(3))+sqrt(2-sqrt(3))

(3sqrt(2))/(sqrt(6)-sqrt(3))+(2sqrt(3))/(sqrt(6)+2)-(4sqrt(3))/(sqrt(6)-sqrt(2))

(2)/(sqrt(5)+sqrt(3))-(3)/(sqrt(6)+sqrt(3))+(1)/(sqrt(6)+sqrt(5))=?

(sqrt(24)+sqrt(216))/(sqrt(96))=?2sqrt(6)(b)2(c)6sqrt(2)(d)

The value of sqrt(5+2sqrt(6)) is sqrt(3)-sqrt(2)(b)sqrt(3)+sqrt(2)(c)sqrt(5)+sqrt(6)(d) none of these

sqrt(10+2sqrt(6)+2sqrt(10)+2sqrt(15)) is equal to (sqrt(2)+sqrt(3)+sqrt(5))(sqrt(2)+sqrt(3)-sqrt(5))(c)(sqrt(2)+sqrt(5)-sqrt(3))(d) None of these

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =