Home
Class 12
MATHS
Iff(x)={s i^(-1)(sinx),x >0pi/2,x=0,t h ...

`Iff(x)={s i^(-1)(sinx),x >0pi/2,x=0,t h e ncos^(-1)(cosx),x<0` `x=0` is a point of maxima `x=0` is a point of minima `x=0` is a point of intersection `non eoft h e s e`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={sin^(-1)(sinx),xgt0 (pi)/(2),x=0,then cos^(-1)(cosx),xlt0

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Express each of the following in the simplest form: tan^(-1){(cosx)/(1-sinx)},\ -pi/2

If f(x)={(1+|sinx|)^(a/(|sinx|), -pi/6

If g(x)=sinx,x""inRandf(x)=(1)/(sinx),x"in(0,(pi)/(2)) what is (gof)(x) equal to ?

If f(x)={((sinx+cosx)^(cosecx),-(pi)/2ltxlt0),(a,x=0),((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(-2+1/x)+be(-1+3/x)), 0ltxlt(pi)/2):} is continuous at x=0 then

If S={x epsilon [0,2pi]:|(0,cosx,-sinx),(sinx,0,cosx),(cosx,sinx,0)|=0} then sum_(xepsilonS)tan((pi)/3+x) is equal to