Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The integral int (sec^2x)/(secx+tanx)^(9/2)dx equals to (for some arbitrary constant K ) (A) -1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (B) 1/(secx+tanx)^(11/2){1/11-1/7(secx+tanx)^2}+K (C) -1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K (D) 1/(secx+tanx)^(11/2){1/11+1/7(secx+tanx)^2}+K

int (sec^2x)/((tanx+1)(tanx+2)) dx

Knowledge Check

  • The integral int(sec^(2)x)/((secx+tanx)^(9//2))dx equals (for some arbitrary constant K)

    A
    `-(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    B
    `(1)/((secx+tanx)^(11//2)){1/11-1/7(secx+tanx)^(2)}+K`
    C
    `-(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
    D
    `(1)/((secx+tanx)^(11//2)){1/11+1/7(secx+tanx)^(2)}+K`
  • int(secx+tanx)^(2)dx=

    A
    `x+secx+tanx`
    B
    `2(secx+tanx)-x`
    C
    `2(secx-tanx)+x`
    D
    `2(secx-tanx)+x`
  • int(secx)/(log(secx+tanx))dx=

    A
    `-log|secx+tanx|+c`
    B
    `log|secx+tanx|+c`
    C
    `-log|log(secx+tanx)|+c`
    D
    `log|log(secx+tanx)|+c`
  • Similar Questions

    Explore conceptually related problems

    int(tanx)/(secx+tanx)dx=

    int((secx)/(secx-tanx))dx equals

    (secx-1)(secx+1)

    tan^(-1)(secx+tanx)

    int(1)/(a secx+b tanx)dx=