Home
Class 12
MATHS
If y is the function of z and z=ax then ...

If `y` is the function of `z` and `z=ax` then prove that `(d^2y)/(dx^2) = a^2 (d^2y)/(dz^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=1/z and y=f(x), then prove that, (d^2f)/(dx^2)=2z^3dy/dz+z^4(d^2y)/(dz^2)

If y^2 = ax^2 + b , prove that (d^2y)/(dx^2) = ab/y^3

If y=e^(ax) sin bx then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

Putting logx=z show that, x^2(d^2y)/(dx^2)=(d^2y)/(dz^2)-dy/dz .

In the parabola y^2=4ax , prove that (d^2y)/(dx^2).(d^2x)/(dy^2)=(-2a)/y^3

If y=e^(ax) sin be then prove that (d^2y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .

If y = (sin^-1 x)^2 , then prove that (1 -x)^2 (d^2y)/(dx^2) -x dy/dz =2

If x=e^z then x^2(d^2y)/(dx^2) is

IF y=e^(ax)sin bx , then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)y=0

If y=e^(ax)cosbx , then prove that (d^(2)y)/(dx^(2))-2a(dy)/(dx)+(a^(2)+b^(2))y=0 .