Home
Class 12
MATHS
The value of the determinant of n^(t h) ...

The value of the determinant of `n^(t h)` order, being given by `|x1 11x11 1x |` is `(x-1)^(n-1)(x+n-1)` b. `(x-1)^n(x+n-1)` c. `(1-x)^(-1)(x+n-1)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

If x!=n and cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1) then x=

The derivative of y=(1-x)(2-x)...(n-x) at x=1 is (a) 0( b) (-1)(n-1)!(c)n!-1(d)(-1)^(n-1)(n-1)!

If (x+1)+f(x-1)=2f(x)andf(0),=0 then f(n),n in N, is nf(1)(b){f(1)}^(n)(c)0 (d) none of these

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

The sum of 1+n(1-(1)/(x))+(n(n+1))/(2!)(1-(1)/(x))^(2)+...oo will be x^(n) b.x^(-n) c.(1-(1)/(x))^(n) d.none of these

The value of lim_(x rarr1)(x^(n)+x^(n-1)+x^(n-2)+...x^(2)+x-n)/(x-1)

The value of the determinant |a^(2)a1cos nx cos(n+1)x cos(n+2)x sin nx sin(n+1)x sin(n+2)x is independent of n(b)a(c)x(d) none of these

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these