Home
Class 12
MATHS
If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and ...

If `f^(prime)(x)=1/(-x+sqrt(x^2+1)) ` and `f(0)=(1+sqrt(2))/2` then `f(1)` is equal to- (a) ` log"(sqrt(2)+1)` (b) 1 (c)`1+sqrt(2)` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=(1)/(sqrt(x^(2)-1))

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f'(x)=(1)/(-x+sqrt(x^(2)+1))andf(0)=(-(1+sqrt2))/(2) , then the value of f(5) will be

If f(x)=sqrt(1-sin2x), then f'(x) equals

If f(x)=sqrt(x+2sqrt(x))," then "f'(1)=

If f(x) = sqrt((sqrt(x-1)-2)^2)+sqrt((sqrt(x-1)-3)^2) , then f '(2) is equal to :

If f(x)=sqrt(1-sqrt(1-x^(2))) then at x=0