Home
Class 12
MATHS
If (logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=...

If `(logx)/(2a+3b-5c)=(log y)/(2b+3c-5a)=(log z)/(2c=3a-5b')` then xyz=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b^2+bc+c^2).y^(c^2+ca+a^2).z^(a^2+ab+b^2)=1

If (logx)/(a - b) = (logy)/(b-c) = (log z)/(c -a) , then xyz is equal to :

If (log x)/(b-c)=(log y)/(c-a)=(log z)/(a-b), then which of the following is/are true? zyz=1 (b) x^(a)y^(b)z^(c)=1x^(b+c)y^(c+b)=1( d) xyz=x^(a)y^(b)z^(c)

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that xyz = 1

If log x(log x)/(a^(2)+ab+b^(2))=(log y)/(b^(2)+bc+c^(2))=(log z)/(c^(2)+ca+a^(2)) then x^(a-b)*y^(b-c)*z^(c-a)=

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

If log a=(1)/(2)log b=(1)/(5)log c then a^(4)b^(3)c^(-2)=

If a=log.(3)/(2),b=log.(4)/(25) and c = log.(5)/(9) , then a + b+ c = ______.