Home
Class 12
MATHS
I=int(e^(atan^- 1 x))/((1+x^2)^(3/2))dx...

`I=int(e^(atan^- 1 x))/((1+x^2)^(3/2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int(e^(a tan^(-1)x))/((1+x^(2))^((3)/(2)))dx

I=int e^(mtan^-1x)/(1+x^(2))dx

" (i) "int(e^(tan^(-1)x)dx)/((1+x^(2))

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

int(e^(x))/((1+x)^(3))dx-int(e^(x))/(2(1+x)^(2))dx=

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

The integral I=int_(e)^(e+1)(1+x^(2))/(1+x^(3))dx satisfies

I=int(e^(2x)-1)/(e^(2x))dx